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Aplanatic grazing incidence diffraction grating:
a new optical element

Michael C. Hetirick

We present the theory of a grazing incidence reflection grating capable of imaging at submicron resolution.
The optic is mechanically ruled on a spherical or cylindrical surface with varied groove spacings, delivering
diffraction-limited response and a wide field of view at a selected wavelength. Geometrical aberrations are
calculated on the basis of Fermat's principle, revealing significant improvements over a grazing incidence
mirror. Aplanatic and quasi-aplanatic versions of the grating have applications in both imaging and scanning
microscopes, microprobes, collimators, and telescopes. A 2-D crossed system of such gratings, similar to the
grazing incidence mirror geometry of Kirkpatrick and Baez, could potentially provide spatial resolutions of
-2o0 A.

1. Introduction

Currently, there is significant interest in soft x-ray
imaging below spatial dimensions of 1 Am. Instru-
mentally, this has been approached primarily through
development of normal incidence optics, most notably
in the use of transmission zone plates. Dramatic re-
sults have been obtained with this technique, includ-
ing the imaging of living cells at a resolution of 0.05 Am
using 45-A synchrotron radiation.' In addition to bio-
logical microscopy, submicron imaging of x rays is of
fundamental importance in other disciplines, includ-
ing laser-produced plasmas,2 microlithography,3 and
the materials sciences.4 These applications represent
the most challenging task yet requested of x-ray opti-
cal instrumentation.

Alternatives to the zone plate have so far been limit-
ed to mirror systems including multilayer coated nor-
mal incidence Schwarzschild objectives,5 the grazing
incidence axisymmetric mirror systems of Wolter,6-8
and the crossed mirror system of Kirkpatrick and
Baez.9 Each of these approaches involves an unusual
requirement on either the surface roughness, figure,
system coalignment, or focal surface. The best spatial
resolution yet obtained with any of these techniques
has been -1 m. An ideal optic to overcome these
barriers would be spherical (permitting a high-quality
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surface), operating at grazing incidence, focusing sepa-
rately in each dimension (thus not require accurate
coalignment), imaging onto a normal incidence focal
surface, and free of the geometrical aberrations which
have historically plagued grazing incidence optics.

Reflection gratings offer several potential advan-
tages in this arena. They can be fabricated with large
apertures (several X 102 mm), allowing their use at
grazing incidence. This provides for high-reflection
efficiency and requires only modest groove densities
compared to normal incidence mountings. Grazing
incidence is also of practical significance in spreading
high-intensity radiation and its associated heat load
over a large geometric aperture. Reflection gratings
can be easily formed on curved surfaces providing in-
herent imaging capability. Finally, unlike mirrors,
grating imaging is also influenced by the presence of
finite-order diffraction, allowing an extra degree of
freedom which is crucial for aberration correction at
the submicron level.

Diffraction gratings with groove spacings which vary
in a continuous manner across the ruled width have
been invoked in an increased number of situations for
the purpose of aberration correction.l0 -'4 The most
marked improvements have been obtained at grazing
incidence, where mechanically ruled varied space grat-
ings have been used to obtain normal incidence focal
surfaces'5 and quasi-stigmatic soft x-ray images.'6 To
date, these applications have been exclusively spectro-
scopic in nature and have not attempted to deliver
spatial resolutions better than -10 Aim.

We have recently determined that varied spacing
can also be exploited to obtain a usable field of view for
spatial imaging of an extended object at a specified
wavelength. In addition, we intend to show that such
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Object

Image

Fig. 1. Linear magnification of a diffraction grating at point P
along its ruled width. The magnification M x'/x depends on the
object and image distances, the incidence and diffraction angles, and
the orientation of the focal planes. At grazing incidence, the magni-
fication is largely influenced by the ratio cos#/cosa, as illustrated.

a grating would provide spatial resolutions finer by a
factor of several hundred than previously obtained
with soft x-ray reflection gratings. In Sec. II, we intro-
duce this new application and present an intuitive
solution for the grating at unit magnification. Section
III extends these principles to nonunit magnification,
and in Sec. IV we develop 2-D imaging systems based
on this optic. We conclude in Sec. V with a brief
discussion of future directions for this work.

11. Grating Imaging

A. Aplanatism

The merit of an imaging system (e.g., a microscope or
telescope) is based on two primary requirements: (1)
stigmatism, i.e., pointlike, imaging between a particu-
lar object-image pair; and (2) uniform magnification
independent of where a ray strikes the optical aper-
ture. The famous sine rule of Abbe17 states that a
nearly uniform magnification is obtained if the ratio in
sines of the incident and reflected angles, made with
the axis joining object and image, is constant across the
mirror aperture. This is equivalently stated as requir-
ing a fixed image/object distance ratio (r'/r) resulting
in focal planes oriented normal to the optical axis.
Given both stigmatism and a modified sine rule,18 ray
aberrations at the focal plane will grow only as second
and higher powers of the off-axis field angle. Such
optical systems are said to be aplanatic.

However, the sine rule does not apply to diffraction
gratings. By differentiating the grating equation, one
finds that the linear magnification depends not only on
the image and object distances but also on the -ratio in
cosines of the incident/diffracted angles made with the
local grating normal. At grazing incidence, this addi-
tional factor is significant, accounting for the familiar
result that the magnification at the pole of a Rowland
circle grating is unity despite a large inequity between
the object and image distances. At grazing incidence,
of course, the magnification varies in large amounts
across the ruled width of this conventional optic, lead-
ing to a strong violation of aplanatism. The resulting
field of view for spatial imaging is virtually unusable
except along an oblique focal surface.

In place of the sine rule, a new trigonometric rela-
tionship governs the imaging behavior of diffraction
gratings (see Fig. 1):

Grating radius R

circle

Fig. 2. Geometry of an aplanatic grating at unit magnification.
The object A and image B lie along a circle which includes the surface
of radius R. Inscribed right triangles APQ and BPQ share a common
hypotenuse equal to the diameter of grating curvature. This results
in a constant linear magnification independent of P. The focal

surfaces are perpendicular to the principal ray (arrows).

M = (r'/r) * (cosa/cosf3) (cosO/cosO'). (1)

In this equation, M is the linear magnification, r is the
object distance, r' is the image distance, a is the angle
of incidence, a is the angle of diffraction, 0 is the ray
angle made with the object plane, and 0' is the ray angle
made with the image plane. The first factor (r'/r)
accounts for the classical sine rule, and the second
factor (cosa/cosfl) provides the effect of grating dif-
fraction when used in a finite spectral order. The last
factor (cos0/cos0') is approximately unity for normal
incidence focal surfaces (0 = 00 = 0), representing an
obliquity correction to the magnification.

We first seek to obtain 1-D solutions for the optical
surface shape along which the magnification M is con-
stant. In general, this is an ungratifying mathematical
exercise, as Eq. (1) contains quantities which are de-
fined in three different coordinate systems (fixed, rela-
tive to the grating surface, and relative to the focal
surface). Before attacking this problem directly, we
first gain some physical insight by considering unit
magnification. In this case, the included angle of the
light beam (i.e., its numerical aperture) is equal at the
object and image planes. Thus 0(w) = '(w), where w is
the ruled width coordinate, yielding a constant obliq-
uity factor of unity. Equation (1), therefore, reduces
to the equality r/cosf = r/cosa, permitting a simple
geometrical construction as shown in Fig. 2. The ob-
ject and image lie along a conjugate focal surface which
includes a circular grating surface of radius R. The
conjugate surface is thus twice the radius of the classi-
cal Rowland circle. In the grazing incidence limit
(incidence or diffraction angle tending toward 900),
the respective focal distance vanishes as the cosine of
the incidence (or diffraction) angle, thus maintaining a
uniform grating magnification.
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B. Varied Spacing

Of course, a conventionally ruled grating, having
equidistant grooves, will not focus in this manner.
Stigmatism at wavelength X between the object point
A and image point B requires a smooth variation in the
groove spacing a as a function of the ruled width coor-
dinate w:

a(b) = mX,/[sin(Ql) - sina(P)],

C0.c
0.
10

A(2a)

where

a(b) = ao - 4/2 and fl(3) = dlo + 4b/2 (2b)

are the local angles of incidence and diffraction and
where 4) = arcsin(w/R) is the angular position of the
groove relative to a polar coordinate system (Fig. 2).
At the grating pole (4) = 0) all quantities are ascribed
subscripts 0. If we set flo = ao - r- yo, the groove
spacing is

a(]) = mX./sin-y 0 /2/sin(4'/2), (2c)

where yo is the graze angle, and m and 4) have the same
sign. To a high degree of accuracy, the groove density
is thus linearly proportional to the aperture coordinate
P. The groove spacings are thus similar to, but a
factor of 2/sinyo larger than, those of a transmission
zone plate away from its symmetry axis. 9 20 The fac-
tor of 2 arises because there are two zones (one trans-
parent plus one opague or refractory) per groove.
However, the most significant difference is due to the
factor 1/sin-yo, which represents the effective spacing
of a groove as projected onto a plane normal to the line
of sight. For example, at a graze angle of 4° the groove
spacing is -14X larger than two corresponding zones
of an equivalent focal length zone plate at normal
incidence. This is of great practical significance, per-
mitting fabrication of the present design by mechani-
cal means. This contrast with the situation of fabri-
cating a high-resolution zone plate. 2 1 22

With such a space variation, object point A will be
focused without aberration to image position B, and
the focal surfaces for imaging of nearby points will be
normal to the principal ray, as shown in Fig. 2. We
note that these focal surfaces are for spatial imaging, to
be distinguished in all regards from the spectral focal
surface for imaging of A at wavelengths other than .
Due to the variation in groove spacing, this focal sur-
face is an unconventional curve (not the Rowland cir-
cle) of little interest in the present context and is not
shown in Fig. 2.

From Eq. (2), it is evident that the groove spacing
becomes infinite at the grating coordinate 4 = (ao -
f0), where the angles of incidence and diffraction are
equal. This equality is usually associated only with
zero-order (mirror) reflection. However, in the
present situation this interpretation is not valid. The
varied groove spacings maintain a change in path
length of the rays equal to mX* between successive
grooves. Thus the grating operates in finite order
across its entire ruled width. It should be recognized
that, although a can become locally infinite, the dis-
tance to adjacent grooves is always finite. This is

0.1 0.2 0.3 0.4 0.5

Ruled width coordinate, W (mm)

Fig. 3. Spacings between grooves near the center of an aplanatic
grating. The radius of curvature is 50 mm, is aplanatic at 45 A in
unit magnification, and is operated at incidence and diffraction
angles both equal to 820 at the grating pole (w = 0). For groove

number N >> 1, the spacing is inversely proportional to w.

understood by writing the equation for the groove
number N:

mNX, =

J (ro sina 0 + W)2 + [ro cosa 0- (R -R2 -
2)]2

-r

+ i (ro sinf30 -w) 2 + [r cos 0- (R- R2 - W2)p-r.

(2d)

In Fig. 3 we have plotted the actual distance between
groove N - 1 and N, AWN, as a function of the distance
away from the point at which the incidence and dif-
fraction angles are equal (a = = 82.00). The curva-
ture radius R = 50 mm and mX* = 45 A. Because w is
the linear coordinate along the grating basal plane, the
groove spacing ar along the surface tangent is AWN/
cos(w/R). A smooth curve fitted through this plot
agrees with the results of Eq. (2c); however, the dis-
creteness in spacing is evident at small ruled widths
and results at the grating pole in a finite spacing of
-0.06 mm. Nonetheless, this region would be avoided
in practice during a mechanical ruling due to the asso-
ciated impractical requirements of either a vanishing
blaze angle or large groove depth at this location.

The selection of ao and ilo involves a number of
considerations. The incidence angle must allow effi-
cient reflection from the grating surface at the wave-
length of use. In addition, the separation of the dif-
fracted and incident angles determines the required
number of grating grooves over a given ruled width.
To deliver a diffraction width limited by the entire
aperture size, each groove must provide a phase shift in
the diffracted beam equal to m wavelengths relative to
the adjacent groove. To prevent chromatic aberra-
tions, the incident light must be coherent over the net
phase shift across the grating. The net spectral reso-
lution required of the beam is

X/AX = R I m da(4), (3a)

where m changes sign at (P = ao - /o and where 4) a and
4)b lie on the range Cmin to 4 )

max and are chosen to find
the largest value of X/AX. The numerical aperture a =
((bmax - 4)min)/2 for the unit magnification aplanatic

15 September 1986 / Vol. 25, No. 18 / APPLIED OPTICS 3271



2. so 0.22500 0.000 500 0

20

Ditfraction limited image width, AXd(&Jm) at A = 45 A

Fig. 4. Curves of constant groove density at grating edge (dark) and
required monochromaticity of incident light in X/iA (light) for unit
magnification aplanatic grating. The wavelength is 45 A, and the
radius of grating curvature is 50 mm. For magnifications small or
large compared to unity, divide the groove densities indicated here

by a factor of 2 and the values of AA by a factor of 4.

grating, which is half of the value of a Rowland circle
configuration. For the centered case, cao = fiB, we have

'a= 0, 4)b = "'max, and the required spectral resolution
is minimized. Combining Eqs. (2c) and (3a), we have

A/AA - a2 R sin'y0 /(2X,)

= XR sin-y0 /(2Axd), (3b)

where AXd = X*/a is the diffraction-limited image
width for a filled rectangular aperture. Given a con-
tinuum light source, or one with a bandpass >UA, this
requires use of a premonochromator. Even if it could
be made 100% efficient, the transmitted throughput
would decrease linearly with A. It is thus of practical
advantage to minimize XAX. Immediately evident is
that a small curvature radius R is required. For exam-
ple, consider the use of 45-A radiation to obtain a
diffraction spot of 900- (0.09-,um) extent. On the
basis of physical optics, this requires a numerical aper-
ture a 2 0.05. Furthermore, to obtain 20% reflection
from a coated (e.g., osmium) surface at this wavelength
requires a grazing angle Yo of ~~8.23 Equation (3b)
then reveals that a 50-mm curvature (the smallest
commercially available) requires a spectral resolution
of 2000. In practice, this coherency requirement may
be conservative, as wavelengths other than X* will be
focused poorly on the chosen image plane and thus
result in less degradation of the FWHM (full width at
half maximum) image than the extremum width given
by Eq. (3b). The grating would have a ruled width of 5
mm at the edges of which the groove density would rise
to '--1600 g/mm.

In Fig. 4 we plot the grating parameters hyo and a for
various values of the required spectral resolution and
groove density at the grating edge for a grating curva-
ture radius of 50 mm. The groove densities assume
use of the first spectral order, and the required spectral
resolution and lower horizontal scale (diffraction-lim-
ited resolution) assume 45-A radiation. The un-
allowed region of parameter space corresponds to grat-

ings so large they would extend through the object and
image points, where the grating efficiency vanishes due
to the incident or diffracted ray lying along the surface
tangent. Given the availability of quasi-stigmatic
high-resolution (AX 104) soft x-ray monochroma-
tors2425 and sufficiently intense soft x-ray light
sources,26 it is evident from this graph that spatial
resolutions in the 0.05-0.10-yrm range are accessible.

The diffraction-limited spatial resolution improves
linearly as the wavelength is shortened. For example,
at X. = 8 A, a numerical aperture of only 0.02 would
permit a resolution of 0.04 ,um. Efficient reflection at
this wavelength would require a graze angle of 1.5° or
a factor of -5 smaller than at a wavelength of 45 A.
From Eqs. (2c) and (3b), we see that the effect of a
graze angle which decreases linearly with the wave-
length results in an unchanged groove density and
spectral resolution for a fixed numerical aperture.
From Fig. 4, we therefore infer the requirements of 600
g/mm and X/AX = 300, representing a relaxation over
those at longer wavelengths for the same spatial reso-
lution.
C. Geometrical Aberrations

Of fundamental importance is the effective field of
view for imaging of a finite size object centered atbpoint
A. The size of this field is set by the off-axis grating
aberrations. We shall employ Fermat's principle,'7
which requires that a light ray will trace a path in the
image plane which maintains a stationary optical path
length (phase) locally across the ruled width:

x(w) = rw) dF(w)/dw/cos,3(w), (4)

where x is the image position in the direction of grating
dispersion. Along our aplanatic conjugate circle we
have r'(w) = 2R cos/3(w) exactly. Thus x(w) =
2RdF(w)/dw. In passing, we note that this cancella-
tion of the dependence on w is not exact in the classical
derivation of image aberrations for the Rowland circle.

The light path function F(w) for a spherical grating
is well known.2 7 2 8 Given stigmatism at the fixed
wavelength X, as provided by mechanical ruling fol-
lowing Eq. (2), the aberrant light path function over a
finite field of view can be written simply as the differ-
ence in path length traveled in going from the off-axis
object and image points. As a power series in the
grating coordinates (wl),

F(w) = > [Fij(a,3,r,r') - Fij(ao,IOroro)]w'l,
in

(5a)

where the lowest-order aberration coefficients Fio are
F20 = /2 (cos2 a/r - cosa/R) + 1/2(cos2 f/r' - cosfl/R),

F30 = - '/2 (sinar) (cos2 air - cosa/R)
+ 1/2 (sinfl/r')(cos2fl/r' - cos3/R),

F4 0 = /2[(sin2'a/r)(cos2e/r - cosa/R)

- /4(cos2 air - cosa/R)2/r + 1/4(1/r - cosa/R)/R2
+ (sin 2//r")(cos23/r' - cosfl/R)
-1 4 (COS2 3/r' - cosf/R)2Ir'

+ /4(1/r' - cosf/3R)/R21.

(5b)

(5c)

(5d)
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The omission of terms in Eqs. (5b)-(5d) which de-
pend on the groove spacing is justified by the fact that
these would cancel in forming the subtraction of Eq.
(5a). We note that terms in the groove length have
not been included here, as this analysis is restricted to
the ruled width dimension. Adopting flat focal sur-
faces normal to the principal (on-axis) ray, we have
used Eqs. (4)-(5) to generate image envelopes for off-
axis point sources: a = ao + Q; 3 = 01 + Q (cosao/
cos3o). We plot in Fig. 5 the geometric aberrations of
the unit magnification grating introduced above as a
function of off-axis field angle U2. The quadratic
growth in the image size with field angle verifies the
aplanatic nature of this grating. A resolution of 0.1 ,gm
is achieved over a field of view of h10 ,um, which
indicates its potential for imaging of extended objects.
This result has been confirmed by preliminary ray
tracings.2 9

For comparison, we have also plotted in Fig. 5 the
results for a spherical mirror having the same numeri-
cal aperture, graze angle, and radius of curvature as the
aplanatic grating. Although the physical optics limit
is the same (0.09 ,sm), spherical aberration limits the
mirror to resolutions of the order of 10 gm. Even if
this term were to vanish by use of an ellipse figured to
the required accuracy (in practice representing a sig-
nificant advance in the technology of mirror fabrica-
tion), the defocusing term x20 would be unchanged.
Its linear growth with off-axis angle would limit the
field of view to approximately one resolution element.
This can be remedied only by use of an oblique focal
surface, for which detection efficiencies are generally
small. One, therefore, gains dramatic practical im-
provement (a factor of -100) in imaging through use of
a diffraction grating.

D. Optical Aperture Limit

The physical diffraction limit included in the above
analysis assumes comparable efficiency from all parts
of the grating aperture. In practice, this is complicat-
ed by the potentially large variation in blaze efficiency
across the width of a ruled concave grating.3 0 '3' This
can be understood by considering the shift in the clas-
sically blazed wavelength, which can be expressed ana-
lytically (see Fig. 5):

mBAB(4b)/mXn = 2 sinb sin-y/(sin3 - sina), (6)

where the incidence angle a, diffraction angle A, facet
graze angle y, and the blaze angle 6 all vary as functions
of the ruled width. The variations in a and f are taken
from Eq. (2b), and the facet graze angle is

-y = 7r/2 -o + /2 - (fl. (7)

The variation in blaze angle is of prime importance.
From a theoretical point of view, the optimal ruling
geometry would provide a rotation of the tool orienta-
tion as a function of the ruled width. From Eq. (6a),
one derives that a half-speed rotation (/2) would
maintain a constant blazed wavelength equal to the
stigmatic wavelength. As the angular deviation (a +
) is fixed across the unit magnification aplanatic grat-

102

_ lo' _

-101 
E

0
100-

. 1
0)

E

10-2 -

10-

Field position (Jm)

Fig. 5. Geometrical extremum aberrations vs off-axis position of a
field point. Optical surface has a radius of curvature of 50 mm,
subtends a numerical aperture of 0.05, and is operated at unit
magnification with incidence and diffraction angles equal to 820.
Solid lines are for the aplanatic grating, and dot-dash lines are for a
conventional mirror. The aplanatic grating is absence of linear field
aberrations. The two subscripts refer to the powers in ruled width
and groove length, respectively, on which the wave aberration grows.

a) b)

A B AB

6 

Basal

0 W plane |

Fig. 6. Orientation of groove facets for aplanatic grating at unit
magnification: (a) a rotation of the facets as a function of ruled
width results in uniform blazing at the desired wavelength; (b) more
common condition of a fixed facet orientation relative to the basal

plane.

ing, this blazing would also maintain a constant graze
angle on the facets and a constant groove depth. Such
an ideal geometry is pictured in Fig. 5. From the
practical point of view, however, this would be chal-
lenging. While multipartite concave gratings are com-
monly ruled with multiple settings of blaze angle
across the ruled width,32 the phase coherence between
different panels is almost certainly lost. In the
present design, this would be unacceptable due to the
need for a diffraction-limited full aperture. There-
fore, the ruling must provide either for means of con-
tinuous change of the blaze angle or for monitoring of
the diamond tip position during reorientation of the
blaze angle at discrete intervals along the ruled width.
In the above example, the blaze angle would need to
change by 3 in total across the 5-mm ruling.

In the circumstance of a fixed diamond orientation
[Fig. 6(b)], we have

a0b) = o + (8)

where perfect blazing at 4 = 0 requires 6 = (o - ao)/2.
Using Eqs. (6)-(8), we have plotted in Fig. 7 the ratio of
the blazed wavelength to stigmatic wavelength for the
mounting ao = 840, fBo = 800, and 60 = -20. This curve
exhibits two anomalies, which are associated with (1) a
large groove spacing and (2) a vanishing blaze angle, at
different points along the ruled width. If one blazed
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ao = flo, these two effects would coincide and produce
the curious result of a blazed wavelength equal to twice
the stigmatic wavelength independent of the spectral
order. Even in first order, this would lead to an effi-
ciency near zero. Avoiding these anomalies and re-
quiring a blazed wavelength within a factor of 2 from
the wavelength of use, the usable numerical aperture is
only 0.05 or marginally consistent with the assumed
diffraction limit of 0.09-!sm resolution in Sec. II.C.

III. Nonunit Magnification

Practical attainment of submicron resolution is fa-
cilitated in many cases if the system can be designed
with high magnification (M - 100). This provides
convenient coupling with high-efficiency film33 34 and
electronic detectors3 5 or permits demagnification of
laboratory microfocus light sources36 from 10-/im spa-
tial extents to the desired microprobe size of <0.1 Mrm.
The analytic exercise presented in Sec. II serves as an
introduction to the essential principles on which this
new optic is based. In this section, we apply these
principles to the construction of an aplanatic grating
with the desired high magnification. In this case, the
desired aplanatic geometry is not as evident as it was
for unit magnification. In Secs. II.A and B, we present
two approaches for the derivation of these grating
surfaces.

A. General Differential Equation

Recognizing aplanatism as the condition for which
the linear magnification M is constant over the optical
aperture, we proceed to generate the general surface
equation for which this is true. Adopting a Cartesian
coordinate system (x,y) with object point at (0,-1) and
image point at (0,+1), the trigonometric rule given in
Eq. (1) can be written as

M [X2 + + y)2] [xy-(1 + y)] (9)

[X2 + (1-y) 2 ] [xy + (1-y)]

wherey' is the surface slope and normal incidence focal
surfaces ( = = 0) are adopted. Even with this
condition, Eq. (9) is an approximation as it neglects the
small obliquity of these focal planes relative to rays not
striking the grating center. These terms introduce ray
aberrations dependent on the second power of the
aperture.

In the case of M = 1, Eq. (9) reduces to that of a circle
with arbitrary radius passing through the object and
image points. This is the closed form solution previ-
ously inferred from intuitive arguments. However, in
general we have a highly nonlinear differential equa-
tion which does not simplify to the form y = y(x). At
best, we can rewrite Eq. (9) in the form y' =y'(x):

Y (M _ 1)(y2 + x 2 - 1)y + (M + 1)(y2 - x2 - 1) (10)
X[(M-l)(y2 + x2 + 1) + 2(M + 1)y]

which can be integrated by straightforward numerical
methods.

We recognize from Eq. (1) that grazing incidence
solutions must pass through both the object and image
points so as to maintain a finite magnification in the

Unit magnification

E

a'
E

Aperture coordinate, +

Fig. 7. Variation in blazed wavelength AB relative to the wavelength
of use X as a function of the ruled width across a unit magnification
aplanatic grating. The incidence angle is 840, the diffraction angle
is 800, and the grating facets are in a fixed orientation. Heavy
curves correspond to a calculation based on an outside spectral
order, and light curves are for an inside spectral order. The ratio XB/
X stays within the usable range of 0.5-2.0 over a numerical aperture

of -0.05 ( m -a b . i = 0.1).

limit as the incident or diffracted angle approaches 7r/
2. However, so as not to constrain the solution by
these intuitive arguments, we choose as the starting
point for numerical integration the center of a grating
for which ao = #O. The initial conditions can then be
written

yo = tan(r - a0 -b), (lla)

x0 = r sinb, yo = ro cosb - 1, (llb)

where

rO = 2/ 1+M 2 -2Mcos2a 0 , (11c)

b = arcsin

IM sin2ad/[ + M cos2(7r- 2)] 2 + (M sin2a0 j21. (lid)

As initial values we set M = 3 and, for clarity, ao = 60°
and plot in Fig. 8 the results of an Euler method inte-

2

0 -

-1

-2
-1 0 1

x

Fig. 8. Grating surface which is aplanatic for imaging at nonunit
magnification. The focal surfaces are at normal incidence relative
to the principal ray. For clarity, a magnification of 3 is shown, and
the graze angle is 30° at the grating pole. The grating surface passes
through both image and object. These results were obtained by
numerical integration of the differential equation expressing aplan-
aticism in the case where the small obliquity of field for nonprincipal

rays was ignored.
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gration of Eq. (10). As predicted, the grating surface
passes through both the object and image points where
the numerical integration is interrupted. This result
confirms a general characteristic of the aplanatic grat-
ing, which distinguishes it from both normal incidence
zone plates and other grazing incidence optics.

B. Characteristic Functions

However, the surface shape displayed in Fig. 8 for
the case of nonunit magnification is clearly not circu-
lar. This is unfortunate as spherical surfaces can be
figured with the high metrological accuracy required to
form submicron images (representing wavefront errors
less than -X./4 at grazing incidence). We, therefore,
attempt to approximate the aplanatic surface by a
circle with radius R and refer to this as a quasi-aplanat-
ic grating.

A finite curvature radius permits removal of the
linear growth in the first-order F20 aberration of Eq.
(5b) (Sec. II.C). The correct focusing condition is
obtained by differentiation of this term relative to the
field angle Q of the object and that of the image Q' = 
cosao/cosflo, at a fixed wavelength. Given normal inci-
dence focal planes, the object and image distances do
not vary over the field to within the accuracy of these
first-order calculations. Setting this differential
equal to zero, we have the equation for quasi-aplanatic
focusing:

sinao/ro + sinfO/r = /2(tana 0 + tanf30)/R. (12a)

In terms of the magnification M, this yields the posi-
tions of object and image points given a fixed radius:

r = 2R cosa0(tanao + tanf30/M)/(tana 0 + tanf30); (12b)

r = Mro cosfo/cosa 0. (12c)

In the case of unit magnification, these results confirm
the radius previously given for a fully aplanatic grat-
ing: r = 2R cosao, r = 2R cos3o.

At high magnification, we see from Eq. (12b) that
the object distance approaches R cosa0 for the case flo
= ao, and the image distance tends toward infinity.
The numerical aperture of the grating is, therefore,
equal to the full angle subtended by the ruled width at
the center of curvature. This is twice as large as ob-
tained with unit magnification, allowing a smaller dif-
fraction-limited image (or object). Thus Fig. 4, de-
vised for the case of M = 1, can also be applied
approximately to the case of large M by simply multi-
plying the groove densities by one-half and the re-
quired resolving powers by one-fourth. Similar modi-
fications should be made in Eqs. (2c) and (3b). With
this scaling, it is evident that numerical apertures as
large as 0.2 are accessible on the basis of available
monochromatic light sources and ruling densities.

While linear field aberrations are now absent from
the dominant first-order aberration term, this approx-
imation cannot simultaneously remove such linear
growths in terms dependent on higher powers of the
ruled width. To minimize the required groove density
of the grating and coherency of the incident light, we
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Fig. 9. Total image width vs field position for a quasi-aplanatic
grating (constant radius) at a magnification of 1/300. The radius of
curvature is 50 mm, the graze angle is 8°, and the wavelength is 45 A.
Different numerical apertures are plotted, each reaching a lower
limit set by the physical diffraction width. The encompassed num-
ber of pixels at that resolution limit is FOV. A resolution finer than

-0.1 m is most suited to use in a scanning mode.

consider as before the case of a central mounting 10 =
ao. We set the magnification M = 300, and as before
the curvature radius R = 50 mm and the graze angle =
80. In Fig. 9, we plot the quadrature sum of all geo-
metrical field aberrations, using the formalism devel-
oped in Sec. II.C, summing also the physical diffrac-
tion limit for values of the numerical aperture between
a = 0.025 and a = 0.2. Imaging at spatial resolutions of
0.1 m is shown to include -50 pixels within its field of
view. For numerical apertures of less than -0.1,
third-order wave aberrations dominate, resulting in a
number of pixels proportional to a2. Thus, at a com-
paratively coarse resolution of 1 ,im, the field of view
encompasses 2000 1-D pixels. However, at large nu-
merical aperture, fourth-order aberrations quickly set
it, limiting the field of view to less than one resolution
element at 0.03 ,gm (300 A). This precludes direct use
for imaging of spatially extended objects; nonetheless,
such a stigmatic grating would be ideal for use as a
microprobe. Using a light source of extent of <10 ,um
and positioned within 5 m of the optimal object posi-
tion, a demagnification of 300 would deliver a 300-A
spot diameter. Such performance would be extremely
useful as a scanning microscope.

Scanning microscopes using zone plates37 require an
aperture stop obscuration in the central region to mini-
mize background due dominantly to zero-order con-
tamination of the object.38 In a blazed reflection grat-
ing scanning microscope of the type suggested above,
the ratio of zero order to first-order efficiency is lower,
and thus the requirement for such a stop is not as
strong. Yet, an advantage of a stop at the grating
center would be the relaxed coherency requirement on
the beam as well as a reduced aberration. A balancing
consideration is that such apodization results in com-
paratively more intense sidelobes of the diffraction-
limited spot, an effect which has recently been dis-
cussed also for grazing incidence reflection gratings.39
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The resolution plotted in Fig. 9 is somewhat conser-
vative, because each aberration was treated indepen-
dently and then added in modulus. However, one can
obtain some improvement by deviating from the focus-
ing Eq. (12) and thereby cancel the first-order and
third-order ray aberrations at the grating edge. Com-
bined with an aperture stop at the grating center,
which would decrease the dominant second-order ab-
erration, the field of view could be widened by -100%.
Thus the results shown in Fig. 8 could be extended to
-200-A resolution. More substantial improvements

would require independent removal of the linear field
growth in the various higher-order aberrations. This
requires invoking a noncircular surface in the direction
of ruled width, leading to polynomial surface coeffi-
cients derived in a manner similar to Eq. (12). The
ultimate result of that exercise would be convergence
to a completely aplanatic grating surface, as plotted in
Fig. 8. However, given the unavailability of acircular
or aspherical surfaces figured or bent to the required
high tolerances for this application, we do not develop
these solutions further in this work.

C. Infinite Magnification

As in the case of unit magnification, there are several
practical considerations regarding the grating parame-
ters for nonunit magnification. These include the
variations required of the groove density and blaze
angle and the resulting limits on the usable efficient
grating aperture. For nonunit magnification, there
are also unavoidable and undesired variations in the
groove depth and grazing angle on the illuminated
facets. In principle, one can appeal to the classical
formalism, and expand all the grating parameters in
powers of the ruled width coordinate w. However, the
grating under consideration extends to very high nu-
merical apertures (as large as 0.2) where the conver-
gence of the power series is very slow. Rather than
retaining the large number of terms one would need,
we consider here the limiting case of infinite magnifi-
cation (i.e., a telescope or collimator). In this limit,
exact analytic solutions are easily expressed for all the
important design parameters. Although the detailed
values for these parameters will be different at some
finite magnification, the general behavior of the solu-
tions should not change provided the magnification is
large (e.g., M - 10 or larger).

The geometry is shown in Fig. 10. An object lies
along a circle of diameter equal to the radius of grating
curvature R and is an object source of light (wave-
length X.) striking the grating pole (4' = 0) at an inci-
dent angle ao. When provided with appropriate
groove space variation, the grating diffracts the light
into a collimated beam making an angle 13o relative to
the grating normal at its pole. The grating will operate
without aberration for a chosen object point and with-
out linear field aberrations growing as the first power
of the ruled width. The object and image fields are
normal to the principal ray (the line connecting the
grating pole with the object or image field center).
This is simply the extension of our quasi-aplanatic

Fig. 10. Quasi-aplantic grating with infinite magnification (a colli-
mator). The source point lies along a circle with a diameter equal to
the radius of grating curvature. A telescope (M = 0) is obtained by

reversing the direction of the rays.

grating to M = a. We note that the choice of beam
direction is arbitrary and can be inverted to form a
telescope rather than the collimator shown here.

The functional variation of the groove spacing obeys
Eq. (2a). Applying the law of sines to Fig. 10, the
following equations are obtained for the local angles of
incidence and diffraction:

a = arctanisina 0 cos(4' - a0)/[1 + sina0 sin(4' - a0]l; (13a)

= fi + I). (13b)

In Fig. 11(a) we plot the groove density as a function of
the angular groove coordinate 4' for the grating whose
imaging properties were presented in Fig. 9. Such a
grating requires at most only 2400 g/mm at the edge of
the ruled width nearest the diffracted beam, which is
consistent with the properly scaled results of Fig. 3.
However, the groove density at the grating side nearest
the object vanishes at a second point in addition to the
zero groove density exhibited at the pole. This is due
to the existence of two positions 4' at which the inci-
dent and diffracted angles are equal. From Eqs. (13a)
and (13b), one can show that this second position is at
the angle 4' for which

(14a)tana 0 = sinci/(l - cosF - 2 sin2P)

or for small '

' -- 2/(3 tanao). (14b)

In the present example, ao = 82°, resulting in the
observed zero point at 4' = 0.094. On the basis of
ruling density, the grating could extend over a numeri-
cal aperture of -0.2, where the regions of groove densi-
ty less than some minimum value (say 300 g/mm) are
avoided during fabrication, or masked during use.

Optimal blazing of the desired wavelength is critical,
as before, to provide comparable efficiency from all
parts of the grating aperture. This requires that the
illuminated groove facets be oriented symmetrically
relative to the incident and diffracted directions, so as
to obtain equal incident and diffracted angles relative
to the facet normal. Relative to a plane tangent to the
grating at its pole, the blaze angle orientation of the
grooves should be

T00 = [a(+) - 0(b)]/2 + . (15)
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We plot in Fig. 11(b) these results for the same grating,
showing a 6 variation in the facet orientation. A
"half-speed" rotation, which was exact in the case of
unit magnification, is a good approximation in the
present case for numerical apertures a < 0.1.

The variation in groove depth is also a consideration.
The depth D is simply equal to the local spacing times
the sine of the local blaze angle, e (4) = lo - ao 1/2.

[1. Parameters for a quasi-aplanatic grating at infinite magni-
ion vs the ruled aperture coordinate 4. The numerical aperture
ial to max - min. The grating radius is 50mm, the wavelength
A, and the graze angle is 8: (a) groove density vanishing at the
points where the angles of incidence and diffraction are equal;
roove facet orientation relative to the grating basal plane ac-
)anied by a line showing the effect of an orientation which
ges at half the rate of the surface slope; (c) depth of the groove
fing the blaze angle 6 varies according to the optimal value for 
ed in panel (b); (d) groove efficiency neglecting reflectance of
surface, showing the effect of shadowing when a and f are
ual; (e) graze angle relative to the facet resulting in an increase
flectance as the blaze efficiency decreases. The darkened sec-
of the curves in panels (a)-(e) indicate the usable aperture of

the grating.

This quantity was constant in the case of unit magnifi-
cation, but Fig. 11(c) reveals a factor of 2 variation
across the ruled width of our a = 0.2 high magnification
grating. This complicates the ruling, as it either re-
quires comparable variation in the weight loading of
the diamond tool14 or can result in changes to the
effective blazed wavelength.
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In Fig. 11(d) is plotted the diffraction efficiency not
including the reflectance of the coating. Assuming
perfect blazing [Eq. (15)], this quantity is accurately
derived from geometrical shadowing arguments4 04'
and is

7(b) = min(cosa/cosfi, cosfl/cosa). (16)

This variation is almost a factor of 3 across a numerical
aperture of a = 0.2. However, some relief is obtained
when combined with the opposite trend in reflectance,
which is due to the variation in graze angle plotted in
Fig. 11(e). It is fortunate that the ratio in reflectance
between opposite edges of the grating (6 and 120 graze
angles) for 45 A for a suitable coating (e.g., osmium) is
-30/10% = factor of 3.22 Thus, when combined with
the variation shown in Fig. 11(d), the net absolute
efficiency is expected to fluctuate by only 50%, which is
acceptable on the basis of maintaining a diffraction
width associated with the entire grating aperture.

Such a grazing incidence grating does not suffer
from any fundamental design barriers down to spatial
resolutions of 200 A. Although we have used as an
example a wavelength of 45 A, we find the field of view
to be relatively independent of the wavelength, provid-
ing the graze angle is linearly decreased to provide
nearly the same reflectance. Of course, as discussed in
Sec. II.B, both the groove density and required resolv-
ing power of the light decrease at shorter wavelengths.
Thus, at 23 A, a diffraction-limited spot size of 450 A
would require a numerical aperture of 0.05, be operat-
ed at a nominal graze angle of 40, have a field of view as
plotted in Fig. 9 for a = 0.10, and require a maximum
groove density of 1600 g/mm and a linewidth corre-
sponding to a resolving power of 1800.
IV. Two-Dimensional Imaging Systems

The analysis has so far been restricted to the plane of
incidence and diffraction containing the grating ruled
width. Given only this consideration, a point source
would in general map onto a line focus, at the center of
whose length the above results apply. Focusing in the
perpendicular (sagittal) direction must also be provid-
ed to construct a point-to-point imaging system. In
this section, we illustrate two ways in which such 2-D
imaging can be obtained.

A. Single-Element Grating

The first-order aberration in the sagittal direction of
a grating, i.e., along the lengths of its grooves, is astig-
matism. Removal of this term requires the following
well-known focusing condition:

1r - cosao/p + /rb - cos#0/p = 0,

where we have assumed a general bicycle-tire toroid4 2

with p being the radius of curvature in the direction of
groove length. In the event of a centered grating, =
ao, Eq. (16) reduces to the condition r = /2(1 + 1/M)pI
cosao, where M is the magnification. For a spherical
grating (p = R), this is equivalent to Eq. (12b) for
focusing in the ruled width direction if ao = 450, inde-
pendent of the magnification M. Such a mounting is
illustrated in Fig. 12.

Fig. 12. Single spherical grating with straight grooves and 2-D
imaging properties shown for unit magnification. The incidence
and diffraction angle are 450, resulting in the absence of both astig-
matism and astigmatic coma. Aplanatism is obtained only in the
plane of reflection (top panel), resulting if focal lines oriented nor-

mal to the principal ray, as shown.

Such a low incidence angle would not provide graz-
ing incidence reflectivity and thus could not operate
with conventional coatings at soft x-ray wavelengths.
Independent of the reflectivity, the diffraction-limited
resolution would be no smaller than -0.1-0.2 ,m, giv-
en a maximum groove density of 4800-6000 g/mm [see
Eq. (2c)]. However, a unit magnification grating of
this type would represent a simple submicron refocus-
ing element which could operate efficiently at any
wavelength longward of -200 A. Of course, aplanatic
imaging holds only for a linear field or view within the
plane of incidence.

With the removal of astigmatism, the next most
dominant aberration not yet considered is sagittal (or
astigmatic) coma, dependent on the mixed product
w12, where w is the ruled width and the groove length.
Consistent with the notation of Eq. (5) for the aberra-
tion coefficients, we have42

F12 =- /2 (sinao/r)(l/r - cosao/p)

+ '/2 (sinflo/r)(l/r - cosflo/p), (17)

which also vanishes for the case a = 0 in unit magnifi-
cation, independent of the radius of curvature. Natu-
rally, application of Eq. 17 assumes that the choice of
radius removes astigmatism.

B. Crossed Grating System

Point-to-point focusing at grazing incidence with a
spherical grating requires a system of two such optics
at orthogonal orientations, as in a Kirkpatrick-Baez
mirror system.9 As shown in Fig. 13, the upstream
grating would provide a virtual line focus in the sagittal
direction of the downstream grating and vice versa.
For this geometry, we find that both Eqs. (16) and (17)
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remain valid provided ro is replaced by the distance so
of the virtual sagittal focus from the downstream grat-
ing center and enters as a negative value in Eq. (16).
Thus, for the case 13o = ao, astigmatism is zero if

so = (r' - 2 cosa 0/p)-. (18)

With this condition, the sagittal coma becomes

F12 = (sinao cosa0/p)(l/r' - cosa0 /p). (19)

For a spherical grating (p = R), application of Eq. (4)
for the transverse ray aberration yields the following
image widths:

x1 = /,a2R cos2a0, M = 1; (20a)

X12 = /8 a2R cos2 ao0 , M << 1; (20b)

X12 = '/ 5a2R cos3a 0, M >> 1. (20c)

These values are non-negligible and limit the imaging
performance of such a 2-D spherical grating system.
For example, a unit magnification system with nu-
merical aperture a = 0.05, a radius R = 50 mm, and an
incidence angle ao = 82.0° would have an aberration
due to sagittal coma of -1 m. Thus very grazing
angles of incidence are favored to obtain the highest
spatial resolution.

Equal magnification in both directions can be ob-
tained by a unit magnification system. The mid-point
between the two gratings would coincide with the point
ao = 13o for either grating, the groove density increasing
linearly toward the nearest focal point. In Fig. 14 we
show the results of geometrical raytracing calculations
of such a crossed grating system. Spherical gratings
are used whose geometrical aberrations (dominantly
sagittal coma as outlined above) limit the spatial reso-
lution to -0.2 m. The field of view at this resolution
was determined from raytracing to be -20 um in diam-
eter, encompassing -10,000 2-D pixels. Each grating
surface has a 50-mm radius and accepts a numerical
aperture of 0.025. The groove density varies from
-600 to -1500 g/mm over the 2.5-mm ruled width.
Given 45-A radiation, the diffraction-limited spot also
contributes a FWHM of 0.18 m in both directions
comparable to the geometrical aberrations shown in
Fig. 14. Due to the small numerical aperture, these
results could be obtained with a grating mechanically
ruled in the conventional manner for which the blaze
angle is oriented at a constant angle relative to some
fixed plane.

In the event of cylindrical gratings, sagittal coma
would be considerably smaller. On the basis of physi-
cal optics, a spatial resolution of 0.09 gm could be
obtained without requiring a variable blaze angle (see
Sec. II.D). At a wavelength of 45 A and an incidence
angle of 820 this would require a maximum groove
density of 1550 g/mm at the edges of a 5-mm ruled
width (50-mm curvature radii) and incident light mono-
chromatized to 1 part in 4000. The field of view would
be 10 ,um in diameter (see Fig. 4) encompassing
10,000 2-D resolution elements. Of course, due to the
absence of magnification in this or the previous spheri-
cal grating design, the imaging detector would need to

Fig. 13. Two-dimensional crossed system of spherical diffraction
gratings with straight grooves. Aplanatism in 2-D and a wide imag-
ing field is obtained if the magnification is unity, requiring symme-
try about the mid-point between the gratings. This system has the*
same unit magnification in both directions (i.e., free of anamorpho-
tism). Nonunit magnification is also possible in the case of quasi-

aplanatic spherical gratings.
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Fig.14. Numerical raytracing of the spherical grating 2-D aplanat-
ic grating system illustrated in Fig. 13. The angles of incidence and
diffraction are 84.0 and 88.00, the wavelength is 45 A, and the
illuminated aperture is 0.025 X 0.025. A spatial resolution of -0.2
pm is shown and maintained over a field of view 20 ,um in diameter
encompassing -10,000 pixels. These results were obtained by use of

the raytrace program SHADOW.

have a somewhat smaller pixel size than the detectable
resolution of the object. This would require the use of
a high-resolution resist such as polymethylmeth-
acrylate (PMMA). 4 3

At large magnification, Eq. (20c) reveals that sagit-
tal coma for a spherical grating is small. This residual
could be removed by use of slightly curved grooves
using the mechanical ruling techniques demonstrated
by Harada and Kita'0 and by Hirst.14 However, Eqs.
(20b) and (20c) assume a real source, and thus the
direction of the optical path must be reversed to com-
pute the aberration for the downstream grating.
Therefore, although M >> 1 for the first grating, a value
M << 1 must be used for the second grating, and thus
Eq. (20b) must be applied. This yields a considerably
higher aberration (factor of 1/cosao), which would re-
quire an unfeasible amount of groove curvature to
remove.

The ideal grating surface for nonunit magnification
would be a cylinder ( = ). The grating could be
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Image plane

Fig. 15. Cylindrical grating microprobe at high demagnification.
Quasi-aplanatic 2-D focusing is obtained without the aberration of
sagittal coma. The radius of curvature and demagnification differ
for the two gratings. Minimum monochromaticity of the incident
light is required if the incidence and diffraction angles are equal at
the center of each grating. At small graze angles, spherical gratings

can be substituted for the cylindrical gratings shown.

ruled in the conventional manner, with straight and
parallel grooves formed at the intersection of ruling
planes normal to the surface at its center. Such a
grating would have its virtual focal distance so equal to
the image distance r', which has been previously dis-
cussed in the case of a plane grating for spectroscopy.
In the present nonspectroscopic application, we can
set flo = a at the grating center and thereby remove
sagittal coma. The effect of higher-order mixed terms
in the aberration function remains an issue for further
investigation.

The ultimate system on the basis of attainable spa-
tial resolution is pictured in Fig. 15. It combines 2-D
focusing with high demagnifications (300 in one direc-
tion; 150 in the other) and large numerical apertures
(0.2 for one grating; 0.1 for the other). As shown in Fig.
9, the gratings will individually provide resolutions
from 300 to 600 A. This system would function as a
microprobe whose light source must be 10 m (or
smaller) in diameter and monochromatized to 1 part in
5000 at a wavelength of 45 A (or 1 part in 2500 at a
wavelength of 23 A). The required groove densities
would be 2400 g/mm (or 1200 g/mm) for the first grat-
ing and 1200 g/mm (or 600 g/mm) for the second grat-
ing. The distance to the light source would be -2 m.
This system would be an ideal imaging device for use as
a scanning microprobe/microscope.

C. Normal Incidence

It is a well known fact that normal incidence optics
deliver wider fields of view than those at grazing inci-
dence. The same is true of an aplanatic grating.
From Eq. (12), we see that in the limit as the angles of
incidence and diffraction vanish, quasi-aplanatic solu-
tions are obtained independent of the radius of curva-
ture. This result has been used in practice to develop
normal incidence transmission flat zone plates with
usable fields of view for imaging.119 -22 Due to the
axisymmetric nature of normal incidence, circular
grooves or zones provide complete 2-D imaging in a
single optic.

, r \ \ Circle of

Curve Object plane Apollonius

(R= r

Reflection
grating

Fig. 16. Normal incidence spherical zone plate proposed by Murty.
The circle of Apollonius harmonically divides the distance between
object and image, resulting in an equal ratio r'/r over the spherical
aperture. There is a fortuitous cancellation of the effects of grating
magnification and obliquity of field away from the axis of symmetry,
leading to a higher level of aplanatism than is associated with the
classical sine rule. The grooves are circles rotated around the sym-
metry axis, and the spherical zone plate can theoretically be used in
reflection or transmission.

However, the flat zone plate is not completely apla-
natic. The dominant field aberration is linear with
off-axis angle, and depends on the second power of the
numerical aperture [derivable from Eqs. (5) or Ref. 20].

Ax(geometrical) = 3/8 X a2 (21)

Taking the optimum case Ax(geometrical) = AXd
(physical diffraction limit), then a = X./Ax, and the
largest off-axis angle which can be used at this resolu-
tion is x = 8/3 Ax3/X) 2 . This yields the total field of
view of:

FOV = 16/3 Ax2/X,2 pixels (22)

in each two dimensions. For example, at a wavelength
of 45 A, there are approximately 10,000 one-dimen-
sional pixels available for imaging at a resolution of 0.2
Am, but only 240 pixels for such a zone plate whose
physical optics limit is 300 A resolution. To obtain
useful fields of view at resolutions below approximate-
ly 0.1 Am, it is therefore necessary to consider a more
nearly aplanatic optical surface.

In 1960 Murty proposed such an aplanatic normal
incidence zone plate diffraction grating in reflection or
transmission.4 4 By using the sine condition for a mir-
ror, he arrived at a spherical grating surface equal to
the circle of Apollonius (Fig. 6). This surface does not
pass through either the image or object points and,
therefore, is not simply the normal incidence limit of
the grazing incidence gratings presented above.
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Nonetheless, application of our general grating magni-
fication factor [Eq. (1)] can be shown to retrieve the
solution proposed by Murty. However, we note that
since one is removing ray aberration terms which de-
pend on second and higher powers of the aperture,
both the effect of grating magnification (cosa/coso)
and focal surface obliquity (cosO/cosO') must be consid-
ered. To a high degree of accuracy, these two terms
cancel at normal incidence, and one (fortuitously) re-
tains only the sine rule factor (r'/r) assumed by Murty
for this diffraction grating. As the obliquity factor
holds for any optic (grating or mirror), this cancella-
tion leads to an exactness of the classical sine rule not
present in the case of a mirror. Of course, at non-
normal incidence, this simplification does not occur; in
the case of grazing incidence, the grating magnification
factor is comparable to the factor r'/r, which allowed us
to obtain the aplanatic and quasi-aplanatic solutions
presented above.

The curvature radius for the normal incidence apla-
natic grating of Murty is

R = rM/(M + 1), (23)

which provides for both convex surfaces in transmis-
sion and concave surfaces in reflection. Interestingly,
the required groove density is equal to that (two adja-
cent zones) of a zone plate. Thus, this optic would
have the same practical limitation of requiring an out-
er zone (or groove) width comparable to the spatial
resolution from physical optics.

Using Eqs. (5), we found that an aplanatic normal
incidence zone plate (or reflection grating) would have
a field of view of 5000 pixels at a resolution of 300 A.
This represents a factor of 20 improvement over a flat
zone plate, permitting simultaneous imaging of objects
extending over 100 m. However, the width of the
outer zone would have to be 300 A, corresponding to a
groove density of -16,500 g/mm. At high magnifica-
tion, we have R r = Dia, where D is the grating
aperture size. With D = 100 m, such as provided by
electron lithography,22 and a = 0.1, the required radius
of curvature is -1 mm.

V. Conclusions

An imaging grating of the type introduced here has
obvious applicability to soft x-ray microscopy in the
biological and materials sciences. For spatial resolu-
tions above 0.1 gm, such a grating can be fabricated
using current technology. The required metrological
accuracy in the placement of grating grooves is no
better than that of a nonimaging grating of the same
groove density at the required spectral resolution. By
use of a small curvature radius, spectral resolutions are
typically a few X1000.

Below -0.1 Mm, an enhancement in existing ruling
engines will be required, allowing a variation in the
blaze angle relative to a fixed plane while maintaining
a spectral resolution limited by the entire ruled width.
Such a grating could reach spatial resolutions of -200
A. It is also possible to employ other fabrication
methods, such as visible/UV holography.2 0 4 5 In a fol-

lowing paper, we will report on detailed 3-D ray trace
simulations and aberration analysis of a soft x-ray
microscope based on the concepts presented here.

The author thanks F. Cerrina for providing him with
the ray tracing program SHADOW and modifications
to accommodate varied-space gratings, and acknowl-
edges helpful discussions with J. H. Underwood. This
work was supported by the U.S. Department of Energy
under contract DE-AC03-76SF00098.
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