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Abstract: A new geometric scheme translates a diffraction grating along the straight central 
groove of an exponentially curved pattern. Lit by a stationary incident beam, the 
two-dimensional pattern scales isotropically, scanning wavelength without change to any 
angles, macroscopic distances, curvatures or aberrations. This is exemplified by a new class 
of self-focused grating monochromator, analyzed by rigorous light-path expansion and 
numerical raytracing. All spectral aberrations in pure meridional powers (including defocus, 
coma and spherical aberration) cancel for any angular deviation, magnification and translation 
range. The residual mixed powers yield Δ𝜆/𝜆 =  10!! ~ 10!! in the soft x-ray for plane 
and concave gratings at grazing incidence. Over the visible spectrum, Δ𝜆/𝜆 ~ 10!! is shown 
for plane gratings mounted at Littrow and at normal incidence in reflection or transmission. 
© 2016 Optical Society of America 
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1. Introduction

The author has recently presented a class of single-element high-resolution plane grating 
monochromator having fixed principal ray directions, object distance and image distance [1]. 
That solution correlates multiple-axis grating rotations to correct the geometrical aberrations 
over a broad range in scanned wavelength. As an alternative, the present work employs only 
translation of the grating along its surface, absent any rotations or multiple motions.  
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  Previous geometries employing grating translation are few and limited to motions within a 
meridional plane normal to parallel grooves. Aspnes [2] proposed a sagittally curved 
cylindrical grating translating along its axis of symmetry and having an exponential variation 
in the groove spacings. This is the only fixed geometry design to date, and would exhibit both 
stigmatism and spectral resolution independent of the scan wavelength. However, the grating 
manufacture is challenging for use at grazing angles: a) the exponential spacing does not 
conform to patterns from interference lithography, thus is difficult to provide on the steeply 
curved surface, and b) spectral focusing to first and second powers determines the translation, 
requiring the grating ruled width significantly exceed its illuminated portion. Also, cylindrical 
symmetry constrains the magnification to be sin!𝛼/sin!𝛽 (where 𝛼 and 𝛽 are the graze 
angles of incidence and diffraction), which is undesirably far from unity and leaves 
insufficient freedom to eliminate third-power “spherical aberration”. Nonetheless, Aspnes’ 
insight offers maximum image brightness for a monochromator with moderate-high spectral 
resolution. Ishiguro et. al. [3] employed a large magnitude translation of a grazing incidence 
concave grating - plane mirror system. This corrects for first-power defocusing as the grating 
rotates about its pole to scan wavelength, while preserving the (parallel) optical axes entering 
and exiting the optics pair. Hettrick [4] eliminated the first and second power spectral 
aberrations by small translation of a varied line-space concave grating along its tangent plane. 
To scan wavelength, this motion was combined with rotation about an axis fixed in space. 
April and McCarthy [5] translated a near-normal-incidence plane grating (recorded by 
two-beam interference) in a direction which numerically minimized the net spectral aberration 
to third power. This trajectory, almost normal to the surface, changed both the object and 
image distances while the wavelength was scanned due to the varying angle of diffraction. 
  In the above four geometries, the critical tasks of scanning wavelength and controlling 
aberrations depend on the same optical parameters (e.g. the angles of incidence and 
diffraction, the varied spacing and the translation) specified in the meridional direction. This 
over-constrains the parameters and limits the spectral resolution. In the present work, these 
tasks are executed in orthogonal directions, an approach which is anticipated to improve 
performance and enable a practical design using existing technologies of grating manufacture. 

2. Basic scheme

Consider an optical system employing a diffraction grating, wherein each of the macroscopic 
operational elements are fixed in position, angular orientation and curvature. The only 
variable in such an otherwise static geometry is the scale of the diffracting structure on the 
illuminated portion of the grating. In effect, the groove pattern may only uniformly expand or 
contract, to increase or decrease the scaled wavelength which is diffracted to a given image 
position. The technology to do this directly (by literally stretching an elastomeric grating [6] 
or constructing dynamically programmable meta-surfaces) at diffraction-limited accuracy is 
unlikely to be available soon, particularly for use at short wavelengths. However, a current 
practical means of effectively producing this result, albeit with residual aberrations, is 
illustrated in Fig. 1. Physically static grooves curve away from the line along which the 
grating translates, thereby placing a continuously-scaled groove pattern in the path of a 
stationary incident beam. This scheme provides the following inherent attributes: 1) the 
mechanical stability, accuracy and simplicity of rectilinear translation, 2) a fractional spectral 
resolution (∆𝜆/𝜆 ) which is independent of the wavelength, 3) a fixed principal ray 
(in-and-out) and 4) fixed angular apertures (in-and-out). 
  Except when giving numerical examples, dimensionless quantities (in italic font) will 
typically be used, normalized to the physical object distance r. For in-plane diffraction, the 
straight central groove is in the sagittal direction (normal to the meridional plane of incidence) 
and having a length coordinate ℓ. This is the sum of the grating translation (𝑠) and the 
illuminated aperture coordinate (𝜎) relative to a fixed point in space (P). By convention, the 
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meridional plane (𝜔 − n in Fig. 2) is designated as “horizontal” and the sagittal plane as 
“vertical”, unrelated to the orientation of the physical instrument or the reader’s perspective of 
the figures drawn in this paper. At a given scan wavelength (and thus translation), the 
horizontal aberration ∆𝑥! is in the dispersion direction and is proportional to the fractional 
change in the meridional groove spacing d! over the illuminated aperture ∆𝜎. Furthermore, 
the vertical astigmatism aberration ∆𝑧! is proportional to ∆𝜎. Therefore, the image tilt angle 
𝜓! = arctan (∆𝑥!/∆𝑧!) is proportional to ∆d!(𝜔, ℓ)/d!(𝜔, ℓ) /∆𝜎. To maintain a truly 
fixed geometry, this tilt angle (e.g. that of an exit slit) may not change as the grating is 
translated. This requires the 2D spacing function have the property that 𝜕d!/𝜕ℓ ∝  d!: 

 d! 𝜔, ℓ = e!ℓ d! 𝜔, 0 .                         (1) 

In the semi-classical case where d! 𝜔, 0 = d! (a constant), meridional integration of the 
density (1/d) is trivial, determining the groove number 𝑁 =  e!!ℓ 𝜔 r/d! .  Thus, each 
groove is curved along the pure exponential 𝜔 𝑁, ℓ =  e!ℓ 𝑁 d!/r. 
  The exponential of Eq. (1) also provides equal changes to log 𝜆  per unit translation, 
facilitating a spectral scan over multiple octaves 𝑞. The exponential coefficient is: 

𝑐 = 𝑞 𝑆  ln2  (2) 
where S is the total translation. In the above equations, 𝜔 ≡ w/r, 𝑠 ≡ s/r and 𝑆 ≡ S/r 
where w, s and S are physical dimensions. The required physical grating size is 2𝜔r x 
(S + 2𝜎)r, in which the sagittal dimension is the sum of the translation and the sagittal 
illumination 2𝜎r (typically << S). 

Fig. 1. A divergent groove grating, comprising an exponentially curved pattern. To scan 
wavelength, the grating translates by distance 𝑠(𝜆) along its central groove (dashed), causing 
different regions (white) to be illuminated by a stationary incident beam centered on point P 
(fixed in space). At two sample positions of the scan, the color templates reveal 2D isotropy in 
the groove pattern; any geometrical aberration is thus fixed over the scan. A self-focusing 
version (shown here) also exhibits a variation in spacing with 𝜔. Though not affecting the 
focusing, the groove depth (exemplified by the black sidewalls of a triangular profile) is also 
shown scaling with the spacing. This option would extend the isotropy to 3D, providing a 
relative phase diffraction efficiency which is also independent of the scan wavelength. 
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Fig. 2. A single-element divergent groove monochromator. A stationary iris (not shown) 
parallel to and positioned just above the grating surface provides illumination (white strip) 
fixed in space. In this self-focusing geometry, varied groove spacing in the meridional 
direction constrains ∆𝜆!! = 0  (all 𝑖 ), independent of the scan wavelength. The residual 
aberrations for plane and concave gratings at a grazing angle are given by Fig. 3, and their 
raytracings shown in Figs. 4 and 5, respectively. Non-grazing mountings are illustrated in Figs. 
6 and 7. Plane gratings may employ a long entrance slit, as raytraced in Fig. 8. Note that the 
optically-defined “vertical” is in the direction of 𝑧 and 𝑧′ (see Sec. 2 of the text). 

2.1 Two-dimensional varied line-space gratings 

The aberration correction provided by one-dimensional varied line-space (VLS) gratings has 
previously been determined by expressing the groove number as a power series in the grating 
ruled width coordinate [1]. An extension of that formalism to two dimensions is given here as: 

𝑁 𝜔,𝜎, 𝑠  =
r

 d! 0,0
 

!!!!!

!!!

!!!

!!!
𝑁!" 𝑠  𝜔!𝜎!   (3) 

where 𝑁!" are dimensionless coefficients, 𝑁!! is an arbitrary number assigned to the groove 
passing through the origin and 𝑛 is the maximum value of the power-sum (≡ 𝑖 + 𝑗 − 1). For 
the present divergent groove grating, expansion of Eq. (1) about the translation coordinate s 
determines the full array of 2D coefficients over the (narrow) illuminated region 2𝜎 of the 
sagittal aperture, based on the 1D coefficients (𝑁!) in the meridional plane at 𝑠 = 0:  

𝑁!" 𝑠 =   𝑁!  e−𝑐𝑠  −𝑐 ! 𝑗!   (4) 

where 𝑁! = 1. Derivatives of Eq. (3) provide the groove density, locally measurable in the 
two directions and thus convenient for testing and raytracing:  

1
 d! ω, σ

 =
1
r

!

!!!
𝑉! !"

!!!

!!!
 𝜔!𝜎!  

1
 d𝜎 ω, σ

 =
1
r

n

𝑗=0

n−𝑗

𝑖=0
𝑉𝜎

 
𝑖𝑗 𝜔

𝑖 𝜎𝑗  (5) 
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where the dimensionless density coefficients are 𝑉! 
!" = 𝑖 + 1  𝑁!!!,!  and 𝑉! 

!" =
𝑗 + 1  𝑁!,!!! . Because they derive from the same scalar function (𝑁 ), the “mixed” 

coefficients (𝑖 ≠ 0 and 𝑗 ≠ 0) are related by 𝑉! 
!" = 𝑉! 

!!!,!!! 𝑖 + 1  /𝑗. 
    As with prior 1D (straight and parallel groove) VLS gratings, any nonzero coefficients 𝑁! 
(𝑖 > 1) cause a meridional variation d! 𝜔 . The 2D VLS spacing function d! 𝜔, ℓ  is set 
by Eqs. (4) and (5) with the substitutions 𝑗 = 0 and 𝜎 = 𝑠 = ℓ. Meridional integration of 
1/d determines the groove number 𝑁 =  e!!ℓ  r/d! 𝑁!!!!

!!!  𝜔!. The corresponding “varied 
exponential” curve of each groove is determined numerically, however including only the 
linear VLS coefficient (𝑁!) yields an accurate closed-form (quadratic) approximation: 

𝜔 𝑁, ℓ ≈ 1 + 4𝑁𝑁! d! r  e!ℓ − 1 / 2𝑁! .  (6) 

Expansion of the radical reveals that Eq. (6) reduces to the pure exponential in the limit of 
either a constant line-spacing (𝑁! = 0) or as 𝜔 → 0 near the central groove (𝑁 = 0).  

2.2 Grating fabrication 

This novel grating design may be manufactured by existing maskless optical lithography 
systems (e.g. Heidelberg Instruments). These write unconstrained two-dimensional patterns 
over large apertures (150-1400 mm), such combination being unfeasible by the methods of 
mechanical ruling, interference lithography (“holography”) or e-beam lithography. Blue lasers 
at 405 nm deliver a minimum feature size ~ 500 nm, allowing 1/d ≲ 1000 g/mm; while 
frequency-doubled Argon lasers at 244 nm have produced 3000 g/mm gratings with features 
below 160 nm using nonlinear resists [7]. Though a tilt stage [8] also accommodates steeply 
curved (30 mm sag height) non-planar substrates, auto-focus of the piezo-driven objective in 
real time will follow the shallow meridional curvature required of the gratings proposed here 
(< 0.1 mm sag height) without compromising the feature size. Plane gratings manufactured by 
the maskless method may also be employed as masks in projection lithography systems 
developed for the manufacture of microprocessors. At present, immersion reduction at 193 
nm (e.g. Cymer Inc.) delivers feature sizes below 100 nm (1/d ≳ 5000 g/mm) on smaller 
(32 x 25 mm!) coherent plane apertures. 
  Optical lithography is not subject to the mechanical stresses of burnishing by a diamond 
tool, and maskless writing with lasers requires only minutes or hours (compared to days or 
months for mechanical rulings). This minimizes the groove positioning errors caused by 
environment variables (e.g. ground vibration, temperature and atmospheric pressure). Thus, 
given comparable systems for environmental isolation and interferometric control, the 
optically-written grating will exhibit smaller residual errors in the groove positions. Given a 
RMS random error Δw!"#, the fraction of diffracted intensity which is scattered in the 
dispersion direction as focused stray light (“grass”) is [9] 

𝐹𝑆𝐿 ≈ 2𝜋 Δw!"# /d !.  (7) 

The present commercially-available maskless pattern generators are equipped with translation 
and control systems suitable for the fabrication of integrated circuits (e.g. chip masks). Using 
the finest (10 nm) address grid for these systems, the 3𝜎 specification for uniformity is 60 nm 
(Δw!"# ~ 20 nm).  From Eq. (7), this will result in 𝐹𝑆𝐿 ≲ 10!!  for groove spacings 
d > 4000 nm  (1 d < 250 g/mm) . Upgrading these sub-systems to the accuracy of 
Δw!"# < 1 nm achieved 40 years ago for mechanical ruling engines [10] will reduce the 
𝐹𝑆𝐿 to < 2.5 x 10!! at 250 g/mm, 4 x 10!! at 1000 g/mm and 2.5 x10!! at 2500 g/mm.  
  Grooves of rectangular profile (mesa width = a; ravine width = d − a) and constant depth 
(h) require the fewest post-processing steps. Amplitude diffraction is realized if the ravines are
optically inactive. This would occur if the bottom surface is non-reflective or (at grazing
angles and short wavelengths) it is shadowed by the adjacent walls [h/d > (1 − a/d)/(1/
tan𝛼 + 1/tan𝛽). Using Kirchoff theory, the m’th order relative diffraction efficiency is then
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𝜀! = sin 𝑚𝜋 a/d / 𝑚𝜋 !.  (8) 

In maskless lithography, both d and a may be specified as arbitrary functions of 𝜔 and ℓ. 
For example, if a/d is constant with ℓ, then 𝜀! is independent of the scan wavelength (as 
the grating translates by an amount s along axis ℓ, one has a ∝ d ∝ 𝜆 ∝ e!"). In the case of 
a d = 0.5 , the nonzero even orders are eliminated and the odd orders provide 𝜀! =
 1/ 𝑚𝜋 ! = 0.101 at 𝑚 = ±1 and 0.011 at 𝑚 = ±3. Note that Eq. (8) is also the efficiency 
of a transmission grating having gaps of width a between opaque bars of width d − a. 
  A more advanced option is to provide, independent of the scan wavelength, substantially 
higher first-order efficiency (𝜀! ≳ 0.4) by phase diffraction. This requires groove profiles of 
fixed aspect (h/d) along their lengths, representing an extension of isotropy to the third 
dimension. Varying the chemical etching time along parallel grooves (constant d) has 
previously provided a factor four continuous variation in the depth of a laminar profile [11]. 
However, the present divergent grooves require only a fixed h/d, which may be more 
accurately and readily formed as triangular profiles of constant blaze angle (e.g. at the lattice 
planes of a crystalline substrate). A further simplification is that the new scan method already 
translates the grating along the center groove, so no additional motion is needed. 

3. Light-path analysis of a self-focused grating

The simplicity and high reflection efficiency of a single-element system are of particular 
advantages at short wavelengths and grazing incidence. In this section, geometrical 
parameters (including the 2D VLS coefficients) will be used to analytically express the 
aberrations for a monochromator based on a self-focusing divergent groove grating (Fig. 2). 
Detailed results for the spectral resolution of a plane grating will be given in Secs. 4 (grazing) 
and 6 (non-grazing). Sec. 5 will treat a concave grating surface.  
   The horizontal and vertical lateral ray coordinates at the Gaussian image plane are 
expanded as a sum of powers in grating aperture coordinates (𝜔,𝜎): 𝑥! 𝜔,𝜎  =  𝑥!"!!"  =

𝑥′!"
 

!"  𝜔!!!𝜎! and  𝑧! 𝜔,𝜎  =  𝑧!"!!"  = 𝑧′!"
 

!"  𝜔!𝜎!!!. 
   The principal ray horizontal image coordinate (𝑥!"! = 0) is fixed by the grating equation: 

𝜇 ≡ 𝑚𝜆/d(0,0) = cos𝛽 − cos𝛼 ≃ 2𝛾! 1 − 𝜌 / 1 + 𝜌  (9)   

where 𝜌 ≡  sin𝛽/sin𝛼. In this work, a small-angle approximation is preceded by the “≃” sign 
and is valid when the effective reflection graze angle 𝛾 = 𝛼 + 𝛽 /2 is small. 
  The principal ray vertical image coordinate obeys the law of sagittal reflection, expressed 
here as 𝑧!"! = −𝜂 𝑧, where 𝜂 ≡ r!/r is the image/object distance ratio for the principal ray.  

3.1 General equations of a rigorous expansion method 

The horizontal ( 𝑥′!"
 ) and vertical ( 𝑧′!"

 ) coefficients of the aberrant terms (𝑖 + 𝑗 − 1 > 0) are 
provided by a mathematically consistent theory of light-path expansion [1,12]: 

𝑥′!"
 = −𝜂 𝑖𝜇𝑁!" + 𝜕𝐴!" 𝜕 Δ𝜔 + 𝜕𝐵!" 𝜕 Δ𝜔

!!!!!! !"#$$%!%#&'
/sin𝛽  (10) 

𝑧!!"
 = 𝜂 𝑗𝜇𝑁!" + 𝜕𝐴!"/𝜕(Δ𝜎) + 𝜕𝐵!"/𝜕(Δ𝜎) !!!!!! !"#$$%!%#&'

 (11) 

for which a circular cylinder (meridional concave radius = 𝑅), correct to power 𝜔!, yields: 

𝜕𝐴!" 𝜕 Δ𝜔 = cos𝛼 − 𝑥!"sin𝛼 + 𝑅 − sin𝛼 − 𝑥!"cos𝛼 𝑏 / 1 + 𝑡! 
!"  12

𝜕𝐴!" 𝜕 Δ𝜎 = 𝜎 − 𝑧!" / 1 + 𝑡! 
!"   (13) 

𝜕𝐵!" 𝜕 Δ𝜔 = −𝜂cos𝛽 + 𝜉!"sin𝛽 + 𝑅 − 𝜂sin𝛽 − 𝜉!"cos𝛽 𝑏 /𝜂/ 1 + 𝑡! 
!"  14

𝜕𝐵!" 𝜕 Δ𝜎 = 𝜎 − 𝜁!! /𝜂/ 1 + 𝑡! 
!"      (15) 
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where 𝑏 = 𝜔 𝑅 + 𝜔 𝑅 !/2 + 3 𝜔 𝑅 !/8  is the surface slope at 𝜔 . For a plane 
grating, the last product in the numerators of Eqs. (12) and (14) simplifies to 𝜔. The Taylor 
series for 1/ 1 + 𝑡 is 1 − 𝑡/2 + 3𝑡!/8 − 5𝑡!/16 + 35𝑡!/128 +⋯. Correct to power 𝜔!, 
the lateral squared distances (𝑡) are: 

 𝑡! 
!" = 2𝜔 cos𝛼 − 𝑥!"sin𝛼 − 2𝑧!"𝜎 + 𝑥!"! + 𝑧!"! + 𝜎! + 2 𝑅 − sin𝛼 − 𝑥!"cos𝛼 ∪           (16)  

𝑡! 
!"𝜂! = 2𝜔 𝜉!"sin𝛽 − 𝜂cos𝛽 − 2𝜁!"𝜎 + 𝜉!"

! + 𝜁!"
! + 𝜎! + 2 𝑅 − 𝜂sin𝛽 − 𝜉!"cos𝛽 ∪      (17) 

where ∪ = 𝜔 𝜔 𝑅 /2 + 𝜔 𝑅 !/8 + 𝜔 𝑅 !/16  is the depth of the pole relative to the 
surface at ±𝜔. For a plane grating, the last product in Eqs. (16) and (17) simplifies to 𝜔!. 
The reference image coordinates 𝜉!" and 𝜁!" include all (paraxial and non-paraxial) power 
terms except those of the subject aberration (𝑥!"!  and 𝑧!"! ): 

    𝜉!" = 𝑥!"!!,!
!(!,!)

= 𝑥′!"
 

!,!
!(!,!)

𝜔!!!𝜎!    and    𝜁!" = 𝑧!"! = 𝑧′!"
 

!,!
!(!,!)

!,!
!(!,!)

𝜔!𝜎!!!.    (18)  

  Numerical raytracings show that a sphere results in negligible change to the grating 
aberrations at grazing angles, however the above light-path equations employ a meridional 
cylinder on which the central groove remains straight in the translation (sagittal) direction. 

3.2 Explicit expansion terms for a point object 

Given 𝑥!" = 𝑧!" = 0 (a point object in the meridional plane), consider the 18 coefficients 
( 𝑥′!"

  and 𝑧′!"
 ) for which 𝑖 + 𝑗 − 1 = 1, 2 or 3. Due to the in-plane geometry of the present 

grating design, 𝑧′!!
 = 0 for all odd values of 𝑗, including 𝑧′!"

 . Also, numerical raytrace 
extractions determined the coefficients 𝑥!!!

 , 𝑧!,!"
 𝑥!!"

  and 𝑧!!"
  to be negligible (~10!!). 

Equations (10)-(18) were used to derive the remaining 13 coefficients, employing substitute 
variables 𝑇!" ≡ 𝑥!!"

 sin𝛽/ 𝜇 𝜂 , 𝜏 ≡ cos𝛽, 𝛤 ≡ cos𝛼 cos𝛽 , 𝑄 ≡ 𝜇 sin!𝛽  and 𝜅 ≡ 𝑅sin𝛽. 
Note that 𝜏 ≃ 𝛤 ≃ 1 at grazing incidence (𝛼,𝛽 ≪ 1) and 𝑄 is of order unity at all angles: 

𝑧!!"
 𝜂 = 1 + 1 𝜂                                                               (19) 

𝑇!!
 = 𝑐                                                                         (20) 

𝑧!!!
 𝜂  = −𝑐𝜇                                                                    (21) 

𝑇!"
 =

1
𝜅
+
1
𝜅𝜌

−
1
𝜌!
−
1
𝜂
1
𝑄
− 2𝑁!"                                               (22) 

𝑧!!"
 𝜂 = − 𝛤 + 1 𝜂 𝜏 +  𝑐!𝜇                                                    23  

𝑇!"
 = 2𝑁!" 1 + 𝑄𝜏 + 1 −

1
𝜂
+
1
𝜌!
−
1
𝜌𝜅

𝜏 𝑐                                     (24) 

𝑧!!"
 𝜂 = 𝜏 𝜂−𝑁!" 𝑐𝜇                                                           25  

𝑇!"
 = −3𝑁! +

1
𝜂
−
𝛤
𝜌
1
𝜅
−

1
𝜂!
−
𝛤
𝜌!

3
𝑄
+

2
𝜅
−
4
𝜂

𝑇!"
 − 𝑄 𝑇 !"

 ! − 𝑐!𝜇
𝜏
2

      (26) 

𝑇!"
 = − 1 + 1 + 𝑄 𝜏  𝑐! /2                                                     (27) 

𝑧!!"
 

𝜂
=

𝜏
𝜂
𝑁!" − 𝑁!" 𝑐𝜇 +

1
𝜂𝜅

−
1
𝜂!

 1
2𝑄

−
𝑇!"

 

𝜂
+
𝑄
2

𝑇!"
 ! 𝑐𝜇! −

𝑐!𝜇!

2
             28  

𝑇!"
 = − 4𝑁!" +

1
𝜂!
+
1
𝜌!

−
5
4

1
𝜂!
+
1
𝜌!

sin!𝛽
2
𝑄
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+
1
𝜂!
+
1
𝜌
−
3
2

1
𝜂!
+
1
𝜌!

sin!𝛽
2
𝜅
− 𝛤! +

1
𝜂

𝜏!

2𝜅!
+ 1 +

1
𝜌
sin!𝛽
2𝜅!

1
𝑄

−
3
𝜂! −

3
2𝜂𝜅 𝑇!"

 +
𝑄
𝜂 𝑇!"

! +
2
𝜂
−
1
𝜅
+ 𝑇!"

 𝑄 𝑇!"
 𝜏

+
9
𝜂
−
6
𝜅

𝑇!"
 

𝜂𝑄
+

5
𝜂
−
1
𝜅

𝑇!"
 ! + 𝑄 𝑇!"

 ! − 2𝑁!"𝜏𝑐!
𝜇
2
+ 𝑇!"

 +
1 𝜂 − 1 𝜅

𝑄
𝑐!𝜇!

2
 (29) 

𝑧!!!
 

 𝜂
= 1 +

𝛤
𝜂

+ 𝑁!" −
𝜏
𝜂
𝑐!𝜇 +

1
𝜂!
+
1
𝜌𝜅

−
1
𝜂𝜅

−
3
𝜌!
−
2
𝜂
𝛤

1
2𝑄

+
3
2
−
1
η
𝑐!𝜇 𝜇 

+
𝑇!"

 

𝜂
+
𝑄
2

𝑇!"
! 𝜇 − 𝑇!"

 𝑄𝑐!𝜇! 30

𝑇!"
 = 3𝑁!" + 𝑁!"𝜏 − 𝛤 +

3
2𝜂!

𝜂
𝜅
− 2 −

2
𝜂

𝑇!" 𝑄 − 𝑇!"
 𝑄𝜏 𝑐 + 𝑇!"

 1
𝜅
−
2
𝜂
− 𝑇!"

 𝑄 𝜏 

+ 𝜏𝑐! +
3
𝜂!

3
2
−
𝜂
𝜅
+ 𝛤 +

1
𝜅
−
1
𝜂
1
𝑄
+

5
𝜂
−
1
𝜅
− 1 𝑇!"

 +
3
2

𝑇!"
!𝑄 𝑐𝜇 +

𝑐!𝜇!

2
.    (31) 

  These horizontal (𝑥!) and vertical (𝑧!) image plane positions of a monochromatic ray are 
projected to the spectral direction 𝑥!! , oriented at an angle 𝜓! from the horizontal (see Secs. 
3.3 and 3.4). The modulus of the full variation in this direction, as the rays wander over the 
rectangular illuminated grating aperture (𝜔 = ±𝜔, 𝜎 = ±𝜎) is the extremum (Δ) aberration:  

Δ𝑥!"!! =  𝑥!!"
 cos𝜓! −  𝑧′!!!,!!!

  sin𝜓!  𝑝!" 2ω !!! 2𝜎 ! (32)

where 𝑝!" = 2!!(!!!) if i is odd and j is even (otherwise 𝑝!" = 2!!(!!!)). Differentiation of 
Eq. (9) converts this spatial aberration to wavelength at the principal ray position (𝑥!! = 0): 

Δ𝜆!" 𝜆 = Δ𝑥!"!!/cos𝜓! sin𝛽 𝜂/𝜇. 33

   In the perpendicular direction, the extremum aberration is: 

Δ𝑧!"!! =  𝑧!!"
 cos𝜓! +  𝑥′!!!,!!!

  sin𝜓!  𝑝!" 2ω ! 2𝜎 !!!.  (34) 

3.3 Horizontal image tilt (sagittally-induced) 

The lowest-degree mixed horizontal aberration created by the exponential groove pattern is 
𝑥!!! , resulting from the nonzero value of 𝑁!! = −𝑐 in Eq. (4). Due to the linearity of 𝑥!!!  
with the sagittal pupil coordinate σ, this is simply a tilt of the astigmatic image by the angle 
𝜓!! = arctan (𝑥!!! /𝑧!"! ) relative to the horizontal. From Eqs. (19) and (20): 

tan𝜓!! =  
𝑐 𝜇

1 + 1 𝜂 sin𝛽
 (35) 

where a positive value is counter-clockwise for an upstream observer. Therefore, the 
projection of these two aberrations in the spectral direction (𝑥!!!! = 𝑥!!! cos𝜓! − 𝑧!"! sin𝜓!) is 
made zero by use of an exit slit oriented at the fixed angle 𝜓! = 𝜓!!. In Fig. 2, a vertical sheet 
of incident rays (magenta) strikes the far edge of the illuminated rectangular aperture, at 
meridional coordinate 𝜔 = +𝜔 .  Upon diffraction (lighter magenta), this sheet of rays 
rotates clockwise to the angle 𝜓!, measured within the exit plane. 

3.4 Vertical image tilt (meridionally-induced) 

The lowest-degree mixed vertical aberration 𝑧!!!  would extend a perfect horizontal focus 
for meridional rays (𝑥!"!  = 0) into a vertical line. This would be viewed by the tilted slit as a 
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defocus normal to its length (multiplied by tan𝜓!!). In effect, the vertical aberration from the 
meridional rays induces a second tilt angle 𝜓!! = arctan (𝑥!"! /𝑧!!! ). From Eqs. (21) and (22): 

tan𝜓!! = 2𝑁!" +
1 − 𝜌/𝜅
𝜌!

+
1 − 𝜂/𝜅

𝜂
1
𝑄
/ 𝑐 sin𝛽 .  (36) 

  The solution is to purposely “defocus” the grating horizontally to force equality of the two 
tilts, as geometrically illustrated in Fig. 2. A horizontal sheet of incident rays (orange) strikes 
the grating at sagittal coordinate 𝜎 = −𝜎 (left edge of the illuminated rectangular aperture). 
The diffracted sheet of rays (yellow) rotates counter-clockwise to the same tilt angle as given 
in Sec. 3.3 for the vertical (magenta) rays. Algebraically, this requires a simultaneous solution 
of Eqs. (35) and (36), yielding exact cancellation of spectral defocusing (0 = 𝑥!!!" = 𝑥!!"cos𝜓! − 
𝑧!!!sin𝜓!). This is provided by the first-power VLS coefficient:

2𝑁!" = −
1 − 𝜌 𝜅
𝜌!

+
1 − 𝜂 𝜅

𝜂
1
𝑄
+

𝑐!𝜇
1 + 1 𝜂

 (37) 

where the term in 𝑐!𝜇 is effectively a correction for the sagittally-induced tilt of Eq. (35). 
Likewise, canceling the next higher-power aberration of “meridional coma” in the spectral 
direction (0 = 𝑥!"!! = 𝑥!"! cos𝜓! − 𝑧!"! sin𝜓!) determines the second-power VLS coefficient: 

3𝑁!" =
𝜏
2

1
𝜂𝜅

−
𝛤
𝜌𝜅

−
1
𝜂!
+
𝛤
𝜌!

3
𝑄
+ 𝑇!"

 2
𝜅
−
4
𝜂
− 𝑇!"

 !𝑄 + 2
𝜂𝑁!" − 𝜏
𝜂 + 1 𝜏

− 1 𝑐!𝜇 .   (38) 

  Cancelation of “spherical aberration” in the spectral direction (0 = 𝑥!"!! = 𝑥!"! cos𝜓! −
𝑧!"! sin𝜓!) determines the third-power VLS coefficient:  

4𝑁!" =
1
𝜂!𝜅

+
1
𝜌𝜅

−
2
𝜂!
−
2
𝜌!
−

1
𝜂!𝜅

+
1
𝜌!𝜅

−
1
𝜂!
−
1
𝜌!
−
1
𝜅!
−

1
𝜌𝜅!

tan!𝛽
2

−
1/𝜂 + 𝛤!

2𝜅!
𝜏!

𝑄

−
6
𝜂
−
3
𝜅

𝑇!"
 

2𝜂
+

𝑇!"
 !𝑄
𝜂

+
2
𝜂
−
1
𝜅
+ 𝑇!"

 𝑄 𝑇!"
 𝜏

+
𝑁!" − 1 + 2/𝜂 𝑁!"𝜏

1 + 1/𝜂
2𝑐! +

9
𝜂
−
6
𝜅

𝑇!"
 

𝜂𝑄
+

5
𝜂
−
1
𝜅

𝑇!"
 ! + 𝑇!"

 !𝑄
𝜇
2

+
1
𝜂
−
1
𝜅

1 +
2
𝜂
1
𝑄
+ 1 +

3
𝜂

𝑇!"
 + 𝑇!"

 !𝑄
𝑐!𝜇!

2 1 + 1/𝜂
 +  

𝑐! 𝜇!

2 1 + 1 𝜂
 .       (39) 

Numerical raytracings confirm that Eqs. (37)-(39) result in removal of the 𝑥!"!! , 𝑥!"!!  and 𝑥!"!!  
lateral ray aberrations (numerical residuals < 10!!" radians). This cancelation may continue 
for indefinitely high powers of the pure meridional aberrations, to obtain Δ𝜆!! = 𝑥!!!! = 0 for 
all i. In general, if 𝑥!"!! = 0, the following condition is noted from Eqs. (32) and (35): 

𝑇!" = z!!!!,!!! 𝜂  𝑐 1 + 1/𝜂 .   (40) 

4. Residual spectral aberrations of a grazing incidence plane grating

4.1 Bowtie aberration (Δ𝜆!")

The above removal of Δ𝜆!! and Δ𝜆!! leaves Δ𝜆!" as the dominant spectral aberration. 
Using Eqs. (23), (24), (32) and (33), and substituting 2𝜔 = 𝜙!/sin𝛼 , 2𝜎 = 𝜙!  and 
𝑐 = 𝑞 𝑆  ln2 , this aberration is expressed in parameters related to performance and 
construction, including the solid angle of collection (Ω = 𝜙!𝜙!) from the object:  
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Δ𝜆!"
𝜆

= 2 1 + 𝑄𝜏 𝑁!" + 1 −
1
𝜂
+
1 − 𝜌/𝜅
𝜌!

𝜏 +
𝛤 + 1/𝜂 𝜏 − 𝑐! 𝜇

1 + 1/𝜂
 
𝑞
𝑆

Ω
sin𝛼

ln2
2

 .     (41) 

  A planar surface 𝜅 = ∞  simplifies the grating fabrication and exhibits a focal length (𝜂) 
which is nearly independent of 𝛾 ≲ 15! at fixed 𝜌 [1, Secs. 2.4 and 8.8.5]. At these grazing 
angles, the approximations  𝜏 ≃ 𝛤 ≃ 1 , 𝜇 ≪ 1 ,  𝑄 ≃ 1 𝜌! − 1 2 , 
𝑁!" ≃ 𝜌!/𝜂 + 1 𝜌! − 1  and sin𝛼 ≃ 𝛼 ≃ 2𝛾/ 𝜌 + 1  further simplify Eq. (41): 

Δ𝜆!"
𝜆 !"#

≃
𝜌! + 1 𝑀𝜌  
𝜌 − 1 1 +𝑀𝜌

L
S
Ω𝑞
sin𝛾

ln2
2
𝑓!"                                 (42) 

where 𝑀 = 𝜂/𝜌  converts 𝜂  to a performance parameter (the grating horizontal 
magnification) and L  = 1 + 𝜂  r is the object-to-image path-length. Note that 𝜌 , 
geometrically defined as sin𝛽/sin𝛼  [e.g. see Eq. (9)], is also the relative diffraction 
efficiency (or its reciprocal if 𝜌 > 1) of a blazed triangular groove. The “sep” subscript 
denotes this is a measure of marginal resolution, defined as the center-to-center separation of 
a doublet whose scan profile exhibits a dip of 25%. This requires a form factor 𝑓!", which 
depends on the horizontal aberration (𝑖 = 2, 𝑗 = 1) and the width of the exit slit. Numerical 
raytracings find 𝑓!"~1/3 if the exit slit width transmits half of the intensity at either peak.  

 
Fig. 3. Geometrical aberrations at the exit plane of a self-focused divergent groove grating at a 
3!  graze angle. Due to the fixed geometry, all aberrations are independent of the scan 
wavelength. The object is a point and the detailed parameters are given in the text. Curves are 
light-path calculations of the dominant terms for a plane grating (∆𝜆!"/𝜆, solid) and a concave 
grating (∆𝜆!"/𝜆, dash and ∆𝜆!"/𝜆, dot-dash). Horizontal magnification is ¼ (green), ½ (blue), 
1 (black), 2 (orange) and 4 (red). Precise extractions from numerical raytracings (open circles) 
match the light-path curves to approximately 13 decimal digits.  
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  Consider a small monochromator (L = 500 mm, S = 40 mm) scanning 𝑞 = 3 octaves in the 
soft x-ray at 𝛾 = 3! and Ω = 8 x 10!!. The solid curves in Fig. 3 plot Eq. (42) at different 
magnifications (𝑀) and as a continuous function of 𝜌. The aberration is near local minima at 
𝜌 ~ 1/2 and 𝜌 ~ 2, where numerical raytrace extraction data (Sec. 4.2) are plotted at several 
magnifications, providing independent confirmation of the light-path calculations to within 
the software accuracy (64-bit). At 𝑀 = 1 and 𝜌 =  2, (Δ𝜆!" 𝜆)!"#  ~ 10!! , with other 
parameters as follows: 𝜂 = 2, 𝛼 =  2! , 𝛽 =  4! , 𝑚 = −1 , 𝜇 = 0.0018283 , r =
166.67 mm, r! = 333.33 mm, 𝑐 = 8.664 and 𝜓! = −8.607!. 

4.2 Numerical raytracings of a compact soft x-ray monochromator  

The above light-path equations have been verified by the independent calculations of 
numerical raytracing, employing a recent 2D enhancement of the VLS coefficients included in 
the open source code BEAM4 [13]. In particular, the basis Eqs. (19)-(31) agree exactly with 
the results of the numerical raytrace extraction method given by equations (75)-(83) and (86) 
in a recent paper [1]. The discrepancies are < 10!!" radians, corresponding to a lateral image  
size error of < 0.001 nm at a grating focal length of 10 meters. This sub-atomic scale is many 
orders of magnitude smaller than the diffraction limit of soft x-rays. 
  In the case of the mixed aberrations given by Eqs. (23), (24), (30) and (31), the 21-ray 
extraction method (see Sec. 7.3 in [1]) initially confirmed their accuracy to 10!!!~10!!" 
radians. This was improved to 10!!"~10!!" radians (comparable to the 64-bit floating point 
accuracy of the software) by adding the following rays:  21 !

!𝜔,
!
!𝜎 , 22 −!

!𝜔,
!
!𝜎 , 

23 −!
!𝜔,−

!
!𝜎  and 24 !

!𝜔,−
!
!𝜎 . Using this enhanced (25-ray) extraction, the equations  

Δ𝑧!"! = !
!"

𝑧!!"
!! + 𝑧!!"

!!!  − 80 𝑧!!"
!"! + 𝑧!!"

!"! + 1024 𝑧!!!
!"! + 𝑧′!"!"!      (43) 

Δ𝑥!"! = !
!"

𝑥!!"
!! + 𝑥!!"

!!!  − 80 𝑥!!"
!"! + 𝑥!!"

!"! + 1024 𝑥!!!
!"! + 𝑥′!"!"!           (44)            

for the 2nd power mixed terms remove contamination by the 6th power mixed terms, and  

Δ𝑧!!! =
1
90

 𝑧!!"
!! + 𝑧!!!

!"!

 −2𝑧!!
!!  − 160 𝑧!!"

!"! + 𝑧!!"
!"!

−2𝑧!!
!! + 4096 𝑧!!"

!"! + 𝑧!!"
!!!

−2𝑧!!"
!"!       (45) 

Δ𝑥!"! =  
1
90

𝑥!!"
!! + 𝑥!!!

!"!

−2𝑥!!
!!  − 160 𝑥!!"

!"! + 𝑥!!"
!"!

−2𝑥!!
!! + 4096 𝑥!!"

!"! + 𝑥!!"
!!!

−2𝑥!!"
!"!       (46) 

for the 3rd power mixed terms remove contamination by the 7th power mixed terms. 
  If the small monochromator described in Sec. 4.1 has a square grating format (aspect 𝑔 = 
1) of 40 mm x 40 mm, then 𝜙! = 8.4 mrad and 𝜙! = 0.96 mrad. However, the solid angle 
and hence the spectral resoluton are unchanged if 𝜙! is decreased and 𝜙! increased in 
proportion. For example, 𝜙! =  2.83 mrad and 𝜙! =  2.83 mrad reduces the grating 
meridional dimension to 13.5 mm (𝑔 = 0.3375). Though the vertical astigmatism (Δ𝑧!"! ) 
triples, this does not significantly increase the overall image length, due to the Δ𝑧!!!  
aberration component having been comparable and is now reduced by a factor of 3. In fact, 
the 2D image brightness increases downstream of the exit slit [Fig. 4(c)], due to the reduced 
angular aperture in the horizontal direction. It is noted that the fewer number of grooves 
illuminated is not an issue for this moderate resolution design, as only a few thousand are 
required on the basis of physical diffraction (see Eq. (66)). An elliptical iris (13.5 mm x 0.47 
mm ≃ 2.83 mrad x 2.83 mrad) is used to remove the most offensive (21.5%) rays at the 
corners of the rectangular region shown in Fig. 2. Figure 4(a) shows the 2D spot diagram (on 
the exit plane) of a point object whose spectral output consists of a line doublet. Figure 4(b) is 
a wavelength scan, where the indicated intensity values are the geometrically-transmitted 
fraction (through iris and exit slit) of the photons emitted by the object over a solid angle of 
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8 x 10!! sr at each of the two (equal strength) lines. The 26.5% dip in the transmitted 
intensity between these lines is slightly better than that of the standard Rayleigh criterion, and 
confirms the marginal resolution of Δ𝜆!"/𝜆 !"# = 10!! plotted in Fig. 3 from Eq. (42). 
 

 

Fig. 4. Numerical raytracings of a self-focused divergent groove plane grating at a 3! graze 
angle. The monochromator length is 0.5m, the magnification is unity,  𝜌 = 2 , and 𝜙 =
0.00283. Given a spectral scan of 3 octaves (e.g. 𝜆 = 1 - 8 nm), the grating size is 13.5 mm x 
40 mm and is illuminated by a 13.5 mm x 0.47 mm ellipse. a) The red and blue images shown 
at the exit slit plane are for a point object emitting two wavelengths separated by 1 part in 
1,000. b) The scan intensity profile shows these lines are marginally resolved (26.5% dip), 
including a 0.004 mm object width and a 0.004 mm width straight exit slit. At either peak, 
3.2 x 10!! sr of that line radiation from the object is geometrically transmitted. c) Image 1 m 
downstream of the monochromator, tuned to the dip (upper) or to the blue line peak (lower).  

   For a minimum physical wavelength of 1 nm, the groove density is 1828/mm near one 
end of the sagittal dimension and decreases by the required 3 octaves (factor of 8) to 228/mm 
over the translation range of 40 mm (for a maximum wavelength of 8 nm). As there need not 
be coherence over more than the illuminated groove length (0.472 mm), the grating may be 
assembled from three square segments. each 13.5 mm x 13.5 mm and covering one octave. 
Alternatively, an array of 7 such sub-gratings can scan the entire grazing incidence region 
extending from ~ 0.75 nm in the deep soft x-ray to 96 nm at the border of the far ultraviolet. 
  Doubling S/L (to 1/6.25) in Eq. (42) would halve the limiting aberration (to 1/2000). The 
slit widths required by Eq. (65) would remain unchanged if the length of the monochromator 
was also doubled (to L = 1000 mm). The grating size would increase to 27 mm x 160 mm (or 
five individually coherent segments produced by DUV projection lithography, each 27 mm x 
32 mm) with an elliptical illumination of 27 mm x 0.94 mm. At the same grating format, 
illumination and slit widths, each subsequent 2-fold improvement in spectral resolution 
requires a 2-fold increase in the length and a 4-fold decrease in the solid collection angle. 

5. Residual spectral aberrations of a grazing incidence concave grating 

5.1 Cancelation of the bowtie aberration (Δ𝜆!") 

The dominant aberration of the above plane grating may be eliminated by use of a 
meridionally-concave surface (e.g. a cylinder or sphere). The required curvature is obtained 
by setting Eq. (41) to zero: 

1
𝜅
=

1 𝜌! + 1 𝜂 (1 + 1 𝜂) + 2/𝜂! − 𝛤 − 1 𝑄𝜏 − 𝑄!𝑐!𝜇
1 + 1 𝜌 + 𝑄𝜏 (1 + 1 𝜂)

 

≃ 2
ρ! + 1/η 
ρ + 1 !  −

1 − 1/ρ !

2(1 + 1 𝜂)
 𝑐!𝜇                                         (47) 
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which is verified by numerical raytracings to cancel ∆𝜆!" (within the 64-bit calculation 
accuracy of ~ 10!!"  radians). Because ∆𝜆!" , ∆𝜆!"  and ∆𝜆!"  were already eliminated 
(Sec. 3.4), the only spectral aberrations remaining to a power-sum ≤ 3 are ∆𝜆!" and ∆𝜆!". 
  In the case of unit magnification (𝜂 = 𝜌), the small-angle approximation reveals 𝜅 ≃ 𝜂/2 
at 𝜌 = 2 (inside order) and 𝜅 ≃ 𝜂  at 𝜌 = 1/2 (outside order). Thus, the outside order 
results in twice the radius of curvature, of practical benefit in forming the grating groove 
profile. The condition 𝜅 = 𝜂 = 𝜌 corresponds to horizontal focusing on the Rowland circle 
[14], for which Eqs. (37) and (38) confirm the VLS coefficients 𝑁!" and 𝑁!" are nearly 
zero. Their residuals (∝ 𝜇) arise from the nonzero values of the vertical aberrations 𝑧′!!

  and 
𝑧′!"

  in Eqs. (21) and (25). From Eq. (32), these project in the direction of the tilted image 
width, thus contributing to 𝑥′′!"

  and 𝑥′′!"
 , albeit an increasingly small amount at grazing 

angles. This divergent groove grating may replace the classical one in a Rowland circle 
spectrometer, resulting in wavelength scanning by sagittal translation of the grating. In this 
configuration, the exit slit would be fixed (though tilted relative to the classical case) and the 
object would also be fixed (though not be an extended slit, per the discussion in Sec. 7.2). 

5.2 Astigmatic curvature aberration (Δ𝜆!") and exit slit curvature  

Equations (27), (32) and (33) determine this 2nd power extremum wavelength aberration:  

Δ𝜆!"
𝜆

= 1 + 𝑄 𝜏  𝑐! + 1
2𝜎 !

8
                                            48  

which is in exact agreement (~10!!" radians) with numerical raytrace extractions given by 
Eqs. (80) and (86) of a recent paper [1]. The small angle approximation yields: 

Δ𝜆!"
𝜆 !"#

≃
1
𝜌!
+ 1  

𝑐!

2
+ 1

𝜙!
!

8
𝑓!" 

≃
2 + 2𝜌 + 2 𝜌 + 𝜌! + 1 𝜌! 

(1 +𝑀𝜌)!
ln2
8

!

+
𝜌 + 1 !/ 1 +𝑀𝜌 !

32 𝑞! L S ! 
L! Ω 𝑞
𝑔S! sin 𝛾

!

𝑓!".      (49) 

The solid collection angle (Ω), the graze angle (𝛾) and the angle ratio (𝜌) affect the 
throughput, while the grating dimensions S and 𝑔S impact the manufacturing cost. The form 
factor 𝑓!" converts the extremum aberration to the marginal resolution of a scanned line 
doublet. As for the 𝑓!" aberration (also of power-sum = 2) discussed in Sec. 4, raytrace scans 
determined 𝑓!" ~ 1/3 when using an exit slit width which transmits 50% of the diffracted 
energy at the line peak. The dashed curves in Fig. 3 plot Eq. (49) using 𝑔 = 1/4 and the 
remaining parameters as previously given. This aberration is seen to be considerably smaller 
(factors of 10) than the dominant term Δ𝜆!" 𝜆 !"# for the plane grating.  
  Use of a curved exit slit to match the shape of this aberration provides additional 
improvement. As derived in Fig. 5(a), the nominal radius of this slit is fixed by the 
astigmatism (Δ𝑧!"!! ) and astigmatic curvature (Δ𝑥!"!! ) terms: 

𝑅!" =
Δ𝑧!"!! /2 !

2 Δ𝑥!"!!
=

𝑧!"
 !cos𝜓! + 𝑥!!

 !sin𝜓! ! 𝜎!

2 𝑥!"
 !cos𝜓! − 𝑧!"

 !sin𝜓!  𝜎!
=
𝜂 1 + 1 𝜂 + 𝑄𝑐!𝜇 1 + 1/𝜂 !

1 + 1 + 𝑄𝜏 𝑐! 𝜇
  

≃
2sin𝛽
𝑐!𝜇

𝜂 1 + 1 𝜂 !

1 + 1/𝜌!
                                                (50) 

where the last expression omits the 𝜇 term in the numerator and is accurate at grazing 
incidence. The image curvature radius shown in the spot diagram of Fig. 5(b) is r𝑅!" ≃ 1615 
mm, with other parameters as follows: sin 𝛾 = 0.052,𝑀 = 1, 𝜂 = 2, 𝜌 = 2,𝛽 = 4!, L S =
12.5, 𝑐 = 8.664,𝑚 = −1, 𝜇 = .0018283,𝜓! = −8.607!, r = 3m, r! = 6m. 
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   Equations (19)-(22) and (34) determine Δ𝑧!!!! /Δ𝑧!"!!  ≈ 2 𝜇 ln2  𝑔!𝑞 𝑆 𝐿 sin 𝛾 Ω /
𝜌 + 1 . If this ratio is less than 1 − 1/ 2, the slit width (Δ𝑥!!) required to include the 

extremum aberration [Eq. (48)] is less than Δ𝑥!"!! , as derived from Fig. 5(a): 

Δ𝑥!!/Δ𝑥!"!!  = 2 1 − 1 − Δ𝑧!!!! /Δ𝑧!"!! ! .                                        (51) 

In Fig. 5(b), a grating aperture aspect 𝑔 = 0.25, scan range of 𝑞 = 3 octaves and solid angle 
of Ω = 8 x 10!!  provide Δ𝑧!!!! /Δ𝑧!"!! = 0.0825, resulting in Δx!! =  0.316 Δx!"!! = 0.0045 
mm. For marginal line separation, this is multiplied by the form factor of 𝑓!" to yield a slit 
width of 0.0015 mm, thereby narrowing the transmitted wavelength profile from ∆𝜆!"/
𝜆 !"# = 2.85 x 10!! (straight slit) to 0.9 x 10!!. In the line profile (1D) scan of Fig. 5(c), use 
of a wider slit (0.003 mm) reveals a net resolution of ~ 2.5 x 10!! , limited by the 
higher-power term ∆𝜆!" (Sec. 5.3). It is noted that a low value of 𝑔 not only allows the 
curved slit to compensate for the increased value of ∆𝜆!" in Eq. (49), but also reduces the 
∆𝜆!" aberration in Eq. (53) and provides for a significantly smaller grating. The optimum 
value for 𝑔 is set by requiring the ruled width (𝑔𝑆) encompass a sufficient number of 
grooves to achieve the desired diffraction-limited resolution, as determined by Eq. (66). 

                                     
Fig. 5. Numerical raytrace results on the exit plane of a self-focused divergent groove concave 
grating at a 3! graze angle. The object is a point. (a) Derivation of optimum exit slit curvature 
and width. (b) Spot diagram for a monochromator length of 9 m, a grating size of 180 mm x 
720 mm (may be composed of 4 segments, each 180 mm square), a scan range of 3 octaves, 
unit magnification, 𝜌 = 2,  𝜙! ≃  0.002 and  𝜙! ≃ 0.004. The “red” and “blue” soft x-ray 
wavelengths are separated by 1/ 40,000. (c) Spectral scan through a curved exit slit of 0.003 
mm width; the 48% dip degrades to the marginal value of 20-25% after adding the physical 
diffraction width due to the 41,130 grooves illuminated at a maximum scan wavelength of 8 
nm. (d) Spot diagram for a monochromator length of 25 m, a grating size of 500 mm x 2000 
mm (may be composed of 4 segments, each 500 mm square), a scan range of 1 octave, a 
“sweet magnification” of 4, 𝜌 = 1/2,  𝜙! ≃  0.004 and  𝜙! ≃ 0.002. The “red” and “blue” 
soft x-ray wavelengths are separated by 1/300,000. (e) Spectral scan through a 0.002 mm wide 
curved exit slit; the 50% dip degrades to the marginal value of 20-25% after adding the 
physical diffraction width due to the 457,000 grooves illuminated at the maximum scan 
wavelength of 2 nm. 

  The above choice of unit magnification has the advantages of both minimizing the system 
length (given a minimum practical slit width) and maintaining the horizontal angular aperture 
upon diffraction. The resolving power of 40000 shown in Fig. 5(c) compares well with the 
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value of 25000 calculated for a recently-proposed single-element plane grating design 
“SEPGM” [1] otherwise  having the same nominal performance (2𝛾 = 6!, Ω = 8 x 10!! 
sr, 𝜌 = 2 and 𝑞 = 3). Advantages of the present design are: 1) The mechanically simple and 
robust scanning motion of rectilinear translation of the grating, contrasting with the multiple 
correlated rotations of the grating and the slits required with the previous design [1]; 2) At 
unit magnification (𝑀 = 1), the system length L = 1 +𝑀𝜌 r is only ~ 0.64 times that 
required for the previous design (where 𝑀 = 𝜂/ 𝜌  = 3.7 / 2 = 1.85). This results in a 9 m 
length, compared to 14.1 m for the SEPGM, given the same object distance (r = 3 m) and exit 
slit width (0.005 mm would yield a resolving power of ~ 30,000 for the present design and a 
point object). 3) The potential to maintain peak blaze efficiency at all scanned wavelengths 
(Sec. 2.2). Disadvantages of the present design are: 1) The need for a meridionally-curved 
(non-planar) surface; 2) A larger grating (180 mm x 720 mm vs. 214 mm diameter), albeit the 
long dimension is along the groove lengths and may thus be constructed from an (incoherent) 
linear array of smaller gratings (e.g. 4 gratings, each 180 mm square); 3) A curved groove 
pattern; and 4) Restriction to use with a point object, rather than an entrance slit extending out 
of the meridional plane. 

5.3 High-power mixed aberration (Δ𝜆!") and a “sweet magnification” 

Equations (30), (31), (32) and (33) determine this 3rd power extremum wavelength aberration. 
Employing Eq. (42) and neglecting the higher-power terms in Eqs. (30) and (31): 

Δ𝜆!"
𝜆

≃ 2𝑐  3𝑁!" + 𝑁!" − 2 +
3
2𝜂

−
𝑇!"

 

𝑐
1
𝜂𝜅

−
2
𝜂!

 

+ 𝜂 𝑄 − 1 𝑁!" + 1 + 𝑄 1 +
𝑇!"

 

𝑐
 
𝑐!𝜇
𝜂 + 1

 𝜔!𝜎             52  

  Further simplification uses the previous substitutions for c, 𝑄 , 𝜔  and 𝜎 , and the 
following: 𝑇!"

 = 𝑆!"
   sin𝛽 tan𝜓! ≃  𝑐!𝜇/ 1 + 1/𝜂 − 𝑐, Eq. (37) for 𝑁!", Eq. (38) for 

𝑁!", and Eq. (47) for 1/𝜅, where small-angle approximations are also employed in all terms:   
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≃ 𝐹!"
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𝑀 − 2 /ρ + 1 𝜌! /4

 
c! 𝜇

𝑀𝜌 + 1 𝜌! − 1 𝜌 + 1
    (53) 

and where raytracings find 𝑓!" ~ 1/5. Though Eqs. (52) and (53) are only approximations (~ 
1% accuracy), the full and exact Fermat expansion term resulting from Eqs. (30)-(31) agrees 
precisely (~10!!" radians) with the raytraced numerical extraction Eqs. (45)-(46) of Sec. 4.2 
The dominant bracketed   term in Eq. (53) vanishes if the magnification is chosen to be 

𝑀!"##$ = 1 𝜌!                                                              (54)                                 

corresponding to 𝜂 = 1/𝜌 . Figure 3 plots two examples: 𝑀!"##$ =  1/4, showing the 
cancelation of Δ𝜆!" for an inside spectral order (near 𝜌 = 2); and 𝑀!"##$ = 4, showing the 
cancelation for an outside spectral order (near 𝜌 = 1/2). Figure 5(d) shows the numerical 
raytrace employing the following parameters: sin𝛾 = 0.052, 𝑀 = 4, 𝜂 = 2, 𝜌 = 1 2 , 𝛽 =
2!, L S = 12.5, 𝑐 = 2.888, 𝑚 = +1, 𝜇 = .0018283 , 𝜓! = +5.762! , r = 8.33m and 
r’ =16.67 m. As Eq. (49) reveals that Δ𝜆!" scales with 𝑞!, reducing the coverage to 1 octave 
and use of a curved exit slit of width 0.002 mm encloses the extremum aberration at 
∆𝜆!"/𝜆 ~ 2.2 x 10!!. Such a narrow exit slit and long focal length corresponds to an angular 
uncertainty of only ~ 10!! radians. While the rigidity of a preloaded rectilinear-only grating 
stage maximizes the inherent mechanical stability, residual environmentally-induced changes 
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to the angles of incidence and diffraction would likely require optical monitoring and 
mechanical corrections in real time. 

6. Aberration correction of a plane grating in non-grazing mounts 

6.1 Normal incidence reflection or transmission 

Figure 6 illustrates a reflection or transmission grating illuminated at normal incidence. 
Setting 𝛼 = 𝜋 2 , 𝛽 = 𝜋 2 − 𝛽∗, 𝛤 = 0, 𝜏 = sin𝛽∗, 𝜇 = sin𝛽∗  and  𝜌 = cos𝛽∗ , where 𝛽∗ 
is the angle of diffraction relative to the grating normal, Eq. (41) becomes: 

Δ𝜆!"
𝜆

=  
𝜂 + cos!𝛽∗
𝜂 + 1

/sin𝛽∗ +
2 − 𝜂!

𝜂 + 1 ! − tan
!𝜓! sin𝛽∗ 

ln2
2

L
S

Ω𝑞
𝜂

       55  

in which tan𝜓! =  𝜇𝑐/(1 + 1/𝜂)/cos𝛽∗ = 𝑞𝜂/ 𝜂 + 1 ! L S ln2  tan𝛽∗ . Furthermore, 
𝜂 = 𝑀cos𝛽∗, where 𝑀 is the horizontal magnification, thus the term in brackets   becomes 
a quartic in cos𝛽∗ whose root yields the condition whereby Δ𝜆!" 𝜆 vanishes for any given 
value of 𝑀. For example, consider a small grating (S = 32 mm), a short path length from 
object to image (L = 90 mm) and a scan over the visible spectrum (400-700 nm, thus 
𝑞 = log!(7/4) ≈ 0.807). Numerical iteration of the quartic at a magnification of unity yields 
the aberration-removal solution of cos𝛽∗ = 0.08367 (𝛽∗ = 85.2! and 𝜂 = 0.08367); at a 
magnification of 1.42 it yields cos𝛽∗ = 0.256  (𝛽∗ = 75.2!  and 𝜂 = 0.369 ); and at a 
magnification of 2 yields 𝑐𝑜𝑠𝛽∗ = 0.344 (𝛽∗ = 69.9! and 𝜂 = 0.688).  

 
Fig. 6. Normal incidence mount of a self-focused divergent groove grating, with the diffracted 
beam either transmitted (𝐼!) or reflected (𝐼!). The parameters raytraced are O!P = 53 mm, 
P I = 37mm,  𝛽 = 20.1!, 𝑀 =2,  𝜙! = .20, 𝜙! = .0125,  2𝜔r = 10.75 mm, 2𝜎r = 0.66 mm 
and a spectral scan from 400 nm to 700 nm over a translation of 𝑆r = 32 mm. The spot 
diagram is a numerical raytracing at 2 wavelengths (colored here in red and blue) separated by 
twice the marginal resolution of 1/6000, with the images being identical in transmission and 
reflection. An exit slit would be aligned to the 𝑧!!-axis (image length direction) which makes 
the fixed angle 𝜓! = 46.0642! relative to the 𝑧-axis shown in the optical schematic.  

   The other mixed term of power-sum = 2 is sagittal coma, obtained from Eq. (48):  

Δ𝜆!"
𝜆

=  1 + 1 + tan!𝛽∗  𝑞!
L
S

! ln2 !

𝜂 + 1 !   
𝜙!

!

8
                              56  
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yielding Δ𝜆!" 𝜆 ≈  0.0026 for a square aperture of  𝜙! =  𝜙! = 0.05 . However, the 
aberration is reduced by a factor of 16 (at the same solid aperture) by increasing 𝜙! to 0.20 
and reducing  𝜙! to 0.0125. The resulting Δ𝜆!" 𝜆 = 0.000163 is verified by r Δ𝑥!"!! = 0.011 
mm extracted from the (independent) raytrace spot diagram inset to Fig. 6, and use of Eq. 
(33). Also extracted is r Δ𝑥!"!! = 0.025 mm, in agreement with Eqs. (30)-(32). Multiplying 
these extrema values by 𝑓!" = 1/3 and 𝑓!" = 1/5 yields the marginal aberrations. The net 
resolution then includes the contributions from Eq. (65) for dispersion (assuming 0.004 mm 
widths for both the object and the exit slit) and Eq. (66) for physical diffraction from 14400 
grooves (at the low-density end of 1341 g/mm), yielding Δ𝜆/𝜆 !"# ≈  1/6000. 

6.2 Littrow (retroreflection)  

A self-focusing plane reflection grating mounted in or near Littrow (Fig. 7) and capable of 
wavelength scanning on-blaze provides an efficient and compact monochromator for the UV, 
visible or near IR regions. Setting 𝛼 = 𝜋 − 𝛽, 𝛤 = −1, 𝜇 = 2 sin𝛽∗  and 𝜌 = 1 in Eq. (41): 

   
Δ𝜆!"
𝜆

=  
1
2
+

2
𝜂 + 1 ! − tan

!𝜓! tan!𝛽∗
ln2
2

L
S

𝑞
𝜂

 𝜙! 𝜙!
tan𝛽∗

                  (57) 

in which tan𝜓! = 𝑞𝜂/ 𝜂 + 1 ! L S 2 ln2  tan𝛽∗. The term in brackets   is thereby a 
quadratic in 𝛽∗  whose root yields the condition whereby this aberration vanishes. To 
horizontally retro-focus the object (at a magnification of −1), one chooses 𝜂 = 1. To 
facilitate construction of a monochromator, the object (or entrance slit) and image (or exit slit) 
may be displaced in 𝑥 (a “near-Littrow” configuration). In a very compact configuration, 
L = 90 mm (r’ = r = 45 mm),  Ω = 𝜙! 𝜙s = 0.0025 and 𝑞 = 0.807, the above solution 
for Δ𝜆!" λ = 0 is 𝛽∗ = 49.696!.  

 
Fig. 7. Littrow mount of a divergent groove grating in a retro-focus configuration. The 
parameters raytraced are O!P = P I = 45 mm, 𝛽 =  40.3!, 𝑀 = -1, 𝜙! = 0.200 and 𝜙! =
 0.0125, 2𝜔r = 14.3 mm, 2𝜎r = 0.562 mm and a spectral scan from 400 nm to 700 nm over 
a translation of 𝑆r = 32 mm. The spot diagram is a numerical raytracing at two wavelengths 
(colored here in red and blue) separated by twice the marginal resolution of 1/14000. An exit 
slit would be aligned to the 𝑧!!-axis (image length direction) which makes the fixed angle 
𝜓! = 42.8432! relative to the 𝑧-axis shown in the optical schematic. 

  The remaining aberration is dominated by Eq. (27): 

 Δ𝜆!"
𝜆

=  1 + 1 + 2tan!𝛽∗  𝑞!
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Given 𝜙! = 0.0125 and 𝜙! = 0.200, Eq. (58) provides Δ𝜆!" 𝜆 = 0.000065, verified by 
r Δ𝑥!"!! = 0.005 mm extracted from the raytrace inset to Fig. 7. Also extracted is r Δ𝑥!"!! =
0.008 mm, in agreement with Eqs. (30)-(32). Multiplying these extrema values by 𝑓!" = 1/3 
and 𝑓!" = 1/5  yields the marginal aberrations. The net resolution then includes the 
contributions from Eq. (65) for dispersion (assuming 0.004 mm widths for both the object and 
the exit slit) and Eq. (66) for physical diffraction from 31000 grooves (at the low-density end 
of 2179 g/mm), yielding Δ𝜆/𝜆 !"# ≈  1/14000 . It is noteworthy that this ultra-high 
resolution single-element scanning system is only 45 mm in length. Given the object distance 
is r = L/ 1 + 𝜂  and the image distance is r’ = L/ 1 + 1/𝜂 , the monochromator length 
along its y-axis in Figs. 6 and 7 is between L and L/2, depending upon 𝜂 and 𝛽.  
  Equations (55)-(58) have been verified by extractions of these power terms from numerical 
raytracings. Similar resolution may be obtained for other high angular deviation plane grating 
mountings (e.g. for “near-normal” monochromators). This is due to the ability to balance the 
component terms of Δ𝜆!" in different powers of 𝜇 [e.g. see Eq. (55)], where 𝜇 = sin𝛽∗. 
However, such balancing is not possible at a low angular deviation 2𝛾 (grazing incidence) 
where 𝜇 ≪ 1 per Eq. (9). Due to the very high meridional aperture (0.20 radians), the spot 
diagrams in Figs. 6 and 7 contain a small amount (0.002 mm) of r Δ𝑥!"!! . This high-power 
S-shaped aberration may be easily corrected by a nonzero value of 𝑁!" , though not 
accomodated in the current raytrace routine. However, a nonzero value of 𝑁!" was used to 
remove the high-power r Δ𝑥!"!!  term, which would have otherwise added a U-shaped 
aberration of magnitude 0.002 mm in Fig. 6 and 0.006 mm in Fig. 7. 

7. Inclusion of an entrance slit  

7.1 Tilt angle and curvature: principal ray terms 

In Eqs. (35) and (36), the tilt angle 𝜓! of the exit slit was determined by the paraxial 
focusing of sagittal and meridional rays originating from a single object point in the 
horizontal (meridional) plane. In Fig. 2, this “in-plane” point is designated O! and defines 
the origin (0,0). Now consider an infinitesimal width entrance slit centered on this point, but 
extending a finite distance (𝑧) out of the horizontal plane. To avoid image broadening due 
solely to the off-plane position (𝑥, 𝑧) of a self-luminous object point (O) along this slit, the 
(principal) ray OP from this point to the grating pole must be reflected to an image point I!  
which also lies along the in-plane image orientation given above. Figure 2 illustrates a general 
object point (open circle) and its principal ray (dashed). The algebraic solution constrains not 
only the entrance slit tilt angle (𝜓), but also its curvature radius (𝑅!") and higher derivatives 
of a polynomial function specifying the horizontal coordinate 𝑥 = 𝑧! 1/𝑘!  𝜕!𝑥/𝜕𝑧! , 
where 𝜕𝑥 𝜕𝑧 = tan𝜓  and 𝜕!𝑥/𝜕𝑧!  = 1/𝑅!" . Using the general equation of a recent 
paper [1, Eq. (11)] and substituting 𝜃 = 0 for the present grating mount: 

tan 𝜓 = −𝜌 tan 𝜓! = −
𝜌 𝜇 𝑐

1 + 1 𝜂 sin𝛽
≃   

𝜌 − 1
1 + 1 𝜂

 𝑐 sin 𝛾                   (59) 

𝑅!" = −
sin𝛽 cos𝜓

𝜌 𝜇 
/ 1 +

1 − 𝛤𝜌!

1 + 1/𝜂 ! 𝜏𝑄𝑐
! ≃

2 cos𝜓
𝑐! sin 𝛾 

1 + 1 𝜂 /𝜂
 𝜌 1 + 𝜌 1 − 1/𝜌 !  .   60  

  The coefficient of the next higher degree 𝜕!𝑥/𝜕𝑧!  was obtained by numerical 
optimization. As the independent variables (𝜓!, 𝜌, 𝑐  and 𝛾) are fixed, the entrance slit tilt 
angle and its shape coefficients are also fixed. For example, given the parameters used for the 
Fig. 4 raytrace (𝛾 = 3!, 𝜌 = 2, 𝜂 = 2, and r = 166.67 mm), the above equations determine 
tan𝜓 = −2 tan 𝜓! = 0.3027 and 𝑅!" = 78.9 mm, confirmed by the numerical raytracing 
shown in Fig. 8. This curvature corresponds to a deviation of 0.16 mm at the ends of a 10 mm 
long slit. Such a correction is of practical advantage only if it is larger than the grating 
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aberrations, including those resulting from object points along this tilted slit. It is also noted 
that, instead of curving the entrance slit by 𝑅!", the exit slit could be curved to a radius of 
 𝑅!" = 𝜂𝜌𝑅!"/ cos𝜓, equal to 329.7 mm using the above parameters. However, Fig. 8 shows 
this induces significantly larger off-axis spectral aberrations. 

 
Fig. 8. Raytraced spot diagrams. The plane grating image at the origin is the same as given in 
Fig. 4(a), while the other 16 are for off-plane object points. These are spaced at 1.25 mm 
intervals along a 10 mm long entrance slit, which is tilted by +16.84! in accordance with Eq. 
(59). The upper sequence of images (whose centers lie along a parabolic curve) result from a 
straight entrance slit; the lower sequence of images (whose centers lie on the z!! axis) result 
from an optimally-curved entrance slit [e.g. the radius given by Eq. (60)]. The individual 
aberration terms extracted from the two spot diagrams at the extreme edges (outlined in red) 
are: Δx!!!!! (tilt) = 0.0175 mm, in agreement with Eq. (62); Δx!"#!! defocus = 0.0030 mm, in 
agreement with Eq. (63); Δx!"#!!  coma = 0.0029 mm and Δx!"#!!  spherical aberration =
 0.00026 mm. These combine to yield a net broadening of Δx!"#!!  ~ 0.005 mm, added to that of 
the on-axis image. Note that the magnification from object to image is unity in the spectral 
direction (x!!), but is ≃ 𝜂 =  r!/r = 2 in the slit length direction (z!!).   

7.2 Off-axis grating spectral aberrations  

The object points along a finite length entrance slit deviate from the on-axis (0,0) point in 
both the vertical and horizontal directions. This induces additional wavelength aberrations:  

Δ𝜆!"! 𝜆 = 𝑝!"  Δ𝜆!"#
 𝜆 2𝜔 !!! 2𝜎 !  𝑧! .                                      (61) 

  These terms arise mainly from the slit tilt of Eq. (59), which results in a nonzero horizontal 
coordinate 𝑥 = 𝑧 tan𝜓. This changes the meridional angle incident to the grating and thus 
the image tilt (𝑖 = 1, 𝑗 = 1), the focal length (𝑖 = 2 and 𝑗 = 0) and higher-power terms (not 
derived here by expansion of the light-path, but quantified by extraction from numerical 
raytracings). For a plane grating, the dominant term in Eq. (61) is image tilt, having a total 
power-sum ≡ 𝑖 + 𝑗 − 1 + 𝑘 = 2. Expansion of the light-path (Sec. 3.1) yields:   

Δ𝜆!!!
 𝜆 = 1 + 1 𝜂 tan!𝜓!  𝜏 𝜇 + 1 ≃ 1 + 1 𝜂 tan!𝜓! 𝜇 + 1             (62) 

which is valid for both the plane and meridional-only curved (cylindrical) gratings. 
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  The other lateral aberration of power-sum = 2 is the defocus term, whose expansion 
coefficient for a plane grating (e.g. as employed in Sec. 4) is: 

Δ𝜆!"#$%!"#
 𝜆 = 1 + 1 𝜂 tan!𝜓! + 𝛤 − 1 𝜏 tan𝜓!  sin𝛽 𝜇 

≃ 1 + 1 𝜂 tan!𝜓! 𝜇 − 1 tan𝜓! sin𝛽 .                            (63) 

  If 𝜎/𝜔 ~ sin𝛽 (giving equal horizontal and vertical angular apertures in the diffracted 
beam), Δ𝜆!"#/Δ𝜆!!!~ tan 𝜓! for a plane grating. However, for the concave grating (Sec. 5), 
Fermat expansion and raytracing reveals a substantial increase in the defocusing term: 

Δ𝜆!"#$%& − Δ𝜆!"#$%!"#
 

!"#
 

𝜆
= 2𝜏

𝛤𝜌 + 1
𝜌 + 1 ! 𝜌! +

1
𝜂
tan𝜓!

𝜇
sin𝛽 

≃ 2
𝜌! + 1 𝜂
𝜌 + 1

tan𝜓!

𝜇
sin𝛽 .                                (64) 

This is due to the tilt of the entrance slit, which changes the meridional graze angle and thus 
the focal length of the grating. From Eqs. (61) and (64), the maximum length entrance slit 
which may be used while preserving the resolution of 1/40000 for the unit magnification 
concave grating monochromator (Sec. 5) is only 2𝑧r = 0.072 mm. This restricts the ultra-high 
resolution, concave divergent groove monochromator to use with a pointlike object.  

8. Physical considerations  

8.1 Linear dispersion 

Differentiation of Eq. (9) yields the contribution to the fractional FWHM spectral resolution 
from an exit slit of effective width Δx!""!! ≈ MAX(Δx!!,𝑀Δx) + !

!
MIN(Δx!!,𝑀Δx): 

 (Δ𝜆/𝜆)!"#$%&#"'( =
Δ𝛽 sin𝛽

cos𝛽 − cos𝛼
   ≃

Δx!""!!

𝑀 cos𝜓!  
𝐷
L

                             (65) 

where 𝐷 = 1 + 1/𝜂 /tan𝛽∗  at normal incidence 𝛼 = 𝜋/2 , 𝐷 = 1 + 1/𝜂 / 2 tan𝛽∗  
at Littrow 𝛼 = 𝜋 − 𝛽  and 𝐷 ≃ 𝑀𝜌 + 1 𝜌 − 1  /sin𝛾 at grazing incidence (𝛾 ≪ 1). 
At grazing incidence, the 1/ 𝜌 − 1  dependence encourages a larger value of 𝜌 (or 1/𝜌 in 
the case of an outside spectral order), apart from any additional advantage this provides in 
decreasing the contribution from geometrical aberrations (see Fig. 3). The unit magnification 
design of Sec. 5.2 (𝜌 = 2  and 𝛾 = 3! ) requires Δx!""!! = 0.003 mm (Δx!! = 0.003 mm,
Δx = 0) to provide  (Δ𝜆/𝜆)!"#$%&#"'( ~ 2.0 x 10!! for a monochromator length of L = 9 m. 
For the most compact (L  = 0.5 m) plane grating design proposed in Sec. 4.2, entrance and 
exit slits each of width 0.004 mm yield (Δ𝜆/𝜆)!"#$%&#"'( = 0.7 x 10!!. 

8.2 Diffraction limit  

As the concave grating monochromator (Sec. 5) cancels nearly all spectral aberrations, the 
contribution from physical diffraction is non-negligible. The Rayleigh criterion specifies:  

(Δ𝜆/𝜆)!"##$%&'"() =
1
𝑚 𝑁

 ≃
d sin𝛼
𝑚 r 𝜙!

≃  
𝜆

 𝜙!
𝐷
L

 .                              (66) 

Comparison with Eq. (65) reveals that (Δ𝜆/𝜆)!"##$%&'"()/(Δ𝜆/𝜆)!"#$%&#"'(  = 
𝜆/Δx!""!! )  (𝑀𝜙! . Given 𝑀 = 1 and 𝜙! ≃ 0.002, this ratio is unity at the longest scan 

wavelength (𝜆 =  8 nm) for Δx!""!! = Δx!! =  0.004 mm. At 𝛾 = 3!  and 𝜌 = 2, Eq. (66) 
yields (Δ𝜆/𝜆)!"##$%&'"() = 2.5 x  10!!  for the large ( L = 9 m ) concave grating 
monochromator of Sec. 5.2 (ruled width = 180 mm). For the most compact plane grating 
monochromator of Sec. 4.2, (Δ𝜆/𝜆)!"##$%&'"() = 4.5 x 10!! (ruled width = 13.5 mm).  
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  Finally, consider the very large (L = 25 m, ruled width = 500 mm) nearly aberration-free 
monochomator proposed in Sec. 5.3. With 𝑀 = 4, 𝜌 = 0.5 and 𝜙! = 0.004, Eq. (66) yields 
(Δ𝜆/𝜆)!"##$%&'"() ≃ 2.2 x 10!! at 2 nm (𝑞 = 1), equal to the contribution from Eq. (65) due to 
a 0.002 mm wide exit slit. The sum of these two effects thereby yields the resolution of 
Δ𝜆 𝜆 !"# ≃ 3.3 x 10!! shown in Fig. 5(e). 

9. Conclusions 

A new geometry has been proposed, whereby simple translation of a curved groove pattern 
along its central straight groove provides wavelength scanning within a fixed optical 
geometry. As a first result, a single-element monochromator employing a self-focusing such 
grating has been introduced and its imaging performance analyzed in detail. The spectral 
aberrations in pure meridional powers of the grating aperture were shown to vanish at all 
scanned wavelengths, at all angles of incidence (normal to grazing) and in either transmission 
or reflection. Additionally, the following parameters were also constrained to be independent 
of the scanned wavelength: the residual aberration, the image and object tilt angles, the beam 
aperture and (with advanced etching of the groove profiles) the relative diffraction efficiency. 
  A table-top (0.5 − 1 m in length) grazing incidence plane grating configuration of this 
monochromator scans 3 octaves in the soft x-ray (e.g. 𝜆 =  1 − 8 nm) at unit magnification, 
a resolving power of 1000-2000 and a collection angle of 8 x 10!! sr. Without degrading the 
resolution, the throughput of spatially extended sources may be significantly increased by use 
of a long entrance slit (fixed curvature) while maintaining a straight exit slit. A large (9 m) 
version employs a concave grating surface to eliminate the dominant geometrical aberration, 
providing 𝜆/∆𝜆 ~ 4 x 10!, but is restricted to use with a pointlike object. At a “sweet 
magnification” of 4, the scanned spectrum is nearly free of geometrical aberrations, enabling 
diffraction-limited resolutions of 𝜆/∆𝜆 ~ 3 x 10!  over one octave in wavelength. This 
ultimate design comprises > 10! spectral bins per grating, however the requirements on exit 
slit width (0.002 mm) and system length (25 m) raise issues of stability. At normal incidence 
(transmission or reflection) or in Littrow (retro-reflection), the dominant plane grating 
aberration may be removed by judicious choice of the diffracted angle. This enables high 
spectral resolution (𝜆/∆𝜆 ~ 10!) while maintaining the practical advantage of a plane surface 
for miniature-sized monochromators for applications in the UV to the infrared.  
  The above gratings may be written by existing maskless lithography systems using visible 
or UV lasers at exposed feature sizes of ~ 500 nm to 200 nm (1/d ≲ 2500 g/mm), with a low 
integrated level (10!!) of stray light expected for 1/d ≲ 250 g/mm. For higher densities, the 
groove placement accuracy should be improved by upgrading the environmental and 
interferometer control sub-systems in these commercial pattern writers to those used for 
mechanical ruling engines. For plane gratings, commercial DUV projection lithography can 
reduce a transmissive mask made by the above process, providing a (smaller) grating having 4 
times the groove density (1/d ≲ 10000 g/mm) at the same stray light level as the master. 
  The proposed new method of scanning wavelength is not restricted to a particular focusing 
condition or geometry. Though this introductory paper has presented in detail the example of 
a single-element astigmatic in-plane grating mount, several other applications of this method 
are under study. These include adding wavelength tunability to prior fixed-grating 
spectrograph geometries, multi-element (e.g. stigmatic and common path-length) systems and 
an extreme off-plane grating mount, where the central groove is oriented meridionally. 
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