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Abstract: The author made three errors in a recent publication 
[M.C. Hettrick, “A Single-Element Plane Grating 
Monochromator”, Photonics 3(1), no. 3, 1-44 (2016)] and 
regrets any misunderstanding they may have caused. To  
maintain the rigor of the new light-path expansion method 
introduced therein, the author herein provides the necessary 
corrections and explanations.  

© 2016 by the author. 

 

In a recent publication [1], Equation (27) omitted a factor 𝜼, 
and should read as follows: 
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    Second, Equation (29) incorrectly contained a “trailing term” 
in an attempt to account for the linear gradient in the 1/𝑠𝑖𝑛𝛽 
factor across a curved surface. However, to the extent of 
consistency with the isolation of different power terms, this 
effect is already implicit in the formulation of 𝜕𝐵𝑖𝑗/𝜕(Δ𝜔). It 

therefore must not be added post-facto, and the correct 
equation is simply: 

𝑥′𝑖𝑗
 =

−ℎ𝜂

𝑠𝑖𝑛𝛽
{𝑖𝜇𝑁𝑖𝑗 + [

𝜕𝐴𝑖𝑗

𝜕(Δ𝜔)
+

𝜕𝐵𝑖𝑗

𝜕(Δ𝜔)
]

𝜔𝑖−1𝜎𝑗 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

}    (𝟐𝟗) 

 
    The following related sentence on page 14 of the manuscript 
is also to be deleted (shown here in strikethrough format): The 
trailing term in Equation (29) accounts for the linear variation 
of 1/sin 𝜔 when the optical surface is not flat (1/𝑅 ≠
0). Coincidentally, the errant addition of that trailing term had 
exactly nullified the effect of having incorrectly centered the 
angular coordinates in determining the raytrace extraction 
points plotted in Figure A1. The correct procedure (rigorously 
followed in all other raytracings of this manuscript) is to center 
the linear coordinates. A replacement Appendix A (below) 
includes the corresponding correction of Equation (A5) and 
Figure A1. The final results shown in Figure A1 further 
strengthen the original finding that use of the paraxial image  

 
reference in the standard formulation of the light-path 
expansion is flawed. 
    The above corrections to the non-paraxial expansion method 
(introduced by this author) have no effect upon the results for a 
plane grating. Therefore, the detailed performance values given  
for the single-element plane grating monochromator were (and 
remain) exact. However, the present corrections maintain rigor  
of the author’s general expansion method when applied to 
curved grating (and mirror) surfaces in the future. 
    Third, in Equations (69) and (74), the terms 𝜔̆ and 𝜎̆ should 
be replaced by (2𝜔̆ ) and (2𝜎̆), respectively. 

Appendix A (replacement).  A Simple Illustration 

Figure A1 compares the two light-path calculations (“standard” 
and “rigorous”) of spherical aberration (4,0) vs. magnification 
for the simplest and most common focusing optic, namely a 
spherically concave mirror. The first-degree lateral aberration 
(“defocus”) vanishes for a mirror radius 𝑅 = 2/[(1 + 1/𝜂)𝑠𝑖𝑛𝛾], 
where 𝛾 is the graze angle. Given this constraint, there is no 
aberration to include in the reference image for calculating the 
next higher aberration (second-degree “coma”), so the latter 
result is the same as given by the standard formulation: 
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   Given the same in-focus constraint, the expansion term for 
spherical aberration simplifies to: 
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as given by the standard formulation, which employs only the 
paraxial image reference.  
    However, to formulate 𝑥′

40
  rigorously, one must use 

Equations  (19), (22), (24), (26) and (29) with 𝑥𝑖𝑗 = 𝑧𝑖𝑗 =

0 (on-axis point source), 𝛼 = 𝛽 = 𝛾 (mirror), 𝜎 = 0 (no sagittal 
rays), S = 1 (spherical surface) and the inclusion therein of the 
existing lateral ray aberration from Equation (A1) as a non-
paraxial image reference point (𝜉40 = 𝑥′ 30

 𝜔2). The resulting 
equation for 𝑒1 is unchanged compared to the standard result, 
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due to only the first term of Equation (A2) surviving when 𝛾 = 
𝜋/2 (normal incidence), and in this case there is no 𝑥′ 30

  
aberration and thus only the standard paraxial image point. 
However, the rigorous formulation changes the equation for 𝑒2: 
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which yields the same result as Equation (A4) of the standard 
expansion only for 𝜂 = 1 (where 𝑥′30

  vanishes for all 𝛾) or 𝜂 = 3 
(where 𝑥′30

 ≠ 0, but cancels as used in Equation (26)). At all 
other values of 𝜂, the discrepancy is clear from Figure A1 (solid 
vs. dashed curves). The rigorous theory (and thus the flaw in 
the standard theory) is confirmed by numerical raytrace 
extractions, shown as the overlayed data points (solid dots). 
Due to the high angular aperture (20 mrad), the 
“uncontaminated” (21-ray) version of Equation (85), employing 
7 rays across the pupil meridian at each magnification, was 
used to insure an accurate extraction of 𝑥′40

 . This agrees 
precisely with the solid curve resulting from Equations (A2), 
(A3) and (A5), differing by only negligible amounts (at most, 1.4 
x 10−7 mm at a magnification of 0.25).    
 

 

Fig. A1. Calculated aberrations of a spherical concave mirror at 
the Gaussian focus. As the defocus (first-degree) aberration has 
been forced to vanish by choice of curvature radius, the second-
degree (“coma”) aberration is correctly calculated by either the 
standard or the rigorous light-path formulations. This is 
confirmed by numerical raytrace results (open circles). 
However, due to the coma being non-zero at all but unit 
magnification, the third-degree (“spherical aberration”) lateral 
ray extremas are shown to be calculated incorrectly by the 
standard light-path expansion method (dashed curve). The 
rigorous theory (solid curve), as given in the present work, is 
seen to agree precisely with independent extractions of this 
aberration term from numerical raytracings (dots). In this 
example, the object distance is 1000 mm, the graze angle is 10o 
and the acceptance aperture is 20 mrad. 
 

    From Figure A1, the standard expansion is seen to 
significantly overcalculate spherical aberration for 
magnifications < 1. At grazing angles, this aberration indeed 
vanishes near the root (𝜂 =  1/3) of the quadratic equation 
obtained by setting 𝑒2 = 0 in Equation (A5). The standard 

formulation incorrectly identifies 𝑥′40
  (“spherical aberration” ) 

as being comparable to 𝑥′30
  (“coma”) at low magnifications. 

This would result in the combined (e.g. measured) extremum 
aberration being overestimated by ~ 60% at a magnification of 
0.25. 
     Compared to the classic horizontal focusing mirror example 
given above, the errors inherent in the standard light-path 
expansion are more significant (at a given numerical aperture) 
for a surface-normal rotated (off-plane) diffraction grating, and 
increase further in the presence of varied line-spacing. Firstly, 
such a geometry gives rise to numerous mixed terms, especially 
large being those of (i,1), and thus a proliferating 2D power 
matrix of non-paraxial image points. Secondly, the image tilt 
(1,1) terms cause a transfer of (otherwise insignificant) vertical 
aberrations into rotated slit-normal (spectral) components. 
Thirdly, the inclusion of vertical aberrations as image reference 
coordinates in the rigorous formulation of the horizontal light-
path terms (and vice versa) requires that even non-dominant 
aberrations be initially calculated accurately to avoid 
significant errors in the subsequently expanded higher-degree 
terms. For the above reasons, the standard formulation does 
not provide an accurate prediction of the aberrations for the 
new design, or for other off-plane diffraction mountings in non-
stigmatic geometries. As specific examples, refer to the 
discussion in Section 4 and the Table 2 entries for the 
horizontal aberrations 𝑥′20 and 𝑥′21, which are dominant terms 
of the new optical design and thus require accurate 
formulation. 
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